留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 24 Issue 12
Dec.  2017
数据统计

分享

计量
  • 文章访问数:  396
  • HTML全文浏览量:  57
  • PDF下载量:  8
  • 被引次数: 0
Song Chen and De-gui Zhu, Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders, Int. J. Miner. Metall. Mater., 24(2017), No. 12, pp. 1438-1447. https://doi.org/10.1007/s12613-017-1537-8
Cite this article as:
Song Chen and De-gui Zhu, Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders, Int. J. Miner. Metall. Mater., 24(2017), No. 12, pp. 1438-1447. https://doi.org/10.1007/s12613-017-1537-8
引用本文 PDF XML SpringerLink
研究论文

Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders

  • 通讯作者:

    Song Chen    E-mail: schen2012@swjtu.edu.cn

  • Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, much work has been diligently performed to improve the physical properties of ZnO. In this work, an aqueous suspension route was used to prepare BiOCl/ZnO composite powders, and sintering processes were applied to investigate the influence of sintering temperature on the phase evolutions, microstructures, and photoelectric characteristics of BiOCl/ZnO composite powders. The results indicated that the photoelectric properties mainly depend on the relevant content of BiOCl in the composite powders and the sintering temperature. The photoelectric measurements in K2SO4 solutions show that the photoelectric properties of the samples with the appropriate BiOCl content (0.3mol% and 2.0mol%) are better than those of ZnO and commercial TiO2 (P25) powders, but the photoelectric measurements in NaOH solutions indicate that the photoelectric characteristics of the as-sintered samples are only better than those of P25.
  • Research Article

    Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders

    + Author Affiliations
    • Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, much work has been diligently performed to improve the physical properties of ZnO. In this work, an aqueous suspension route was used to prepare BiOCl/ZnO composite powders, and sintering processes were applied to investigate the influence of sintering temperature on the phase evolutions, microstructures, and photoelectric characteristics of BiOCl/ZnO composite powders. The results indicated that the photoelectric properties mainly depend on the relevant content of BiOCl in the composite powders and the sintering temperature. The photoelectric measurements in K2SO4 solutions show that the photoelectric properties of the samples with the appropriate BiOCl content (0.3mol% and 2.0mol%) are better than those of ZnO and commercial TiO2 (P25) powders, but the photoelectric measurements in NaOH solutions indicate that the photoelectric characteristics of the as-sintered samples are only better than those of P25.
    • loading
    • [1]
      J. Liu, Z.Y. Hu, Y. Peng, H.W. Huang, Y. Li, M. Wu, X.X. Ke, G.V. Tendeloo, and B.L. Su, 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition, Appl. Catal. B, 181(2016), p. 138.
      [2]
      S. Rehman, R. Ullah, A.M. Butt, and N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170(2009), No. 2-3, p. 560.
      [3]
      R. Triboulet, Growth of ZnO bulk crystals:A review, Prog. Cryst. Growth Charact. Mater., 60(2014), No. 1, p. 1.
      [4]
      K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, and G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method, J. Colloid Interface Sci., 479(2016), p. 127.
      [5]
      V. Rekha, C. Sumana, S.P. Douglas, and N. Lingaiah, Understanding the role of Co-ZnO mixed oxide catalysts for the selective hydrogenolysis of glycerol, Appl. Catal. A, 491(2015), p. 155.
      [6]
      J. Podporska-Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S.J. Hinder, D.D. Dionysiou, and S.C. Pillai, Antibacterial properties of F-doped ZnO visible light photocatalyst, J. Hazard. Mater., 324(2017), Part A, p. 39.
      [7]
      N. Güy, S. Çakar, and M. özacar, Comparison of palladium-zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation, J. Colloid Interface Sci., 466(2016), p. 128.
      [8]
      J.L. Song, Q.N. Fan, W.H. Zhu, R.F. Wang, and Z.P. Dong, Preparation of BiOCl with high specific surface area and excellent visible light photocatalytic activity, Mater. Lett., 165(2016), p.14.
      [9]
      Y.F. Li, M. Zhang, D.L. Guo, F.X. He, Y.Z. Li, and A.J. Wang, Facile solvothermal synthesis of BiOCl/ZnO heterostructures with enhanced photocatalytic activity, J. Nanomater., 2014(2014), art. No. 215.
      [10]
      H.Y. Hao, Y.Y. Xu, P. Liu, and G.Y. Zhang, BiOCl nanostructures with different morphologies:Tunable synthesis and visible-light-driven photocatalytic properties, Chin. Chem. Lett., 26(2015), No. 1, p. 133.
      [11]
      T.P. Xie, L.J. Xu, C.L. Liu, J. Yang, and M. Wang, Magnetic composite BiOCl-SrFe12O19:a novel p-n type heterojunction with enhanced photocatalytic activity, Dalton Trans., 43(2014), No. 5, p. 2211.
      [12]
      S.Z. Zhang, F. Ding, X.G. Luo, and X.Y. Lin, Facile synthesis of hierarchical Mo-doped S/BiOCl heterostructured spheres and its excellent photo/thermocatalytic activity under near room temperature, J. Alloys Compd., 673(2016), p. 93.
      [13]
      D.L. Chen, M. Zhang, Q.J. Lu, J.F. Chen, B.T. Liu, and Z.F. Wang, Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties, J. Alloys Compd., 646(2015), p. 647.
      [14]
      T.V.L Thejaswini, D. Prabhakaran, and M.A. Maheswari, Ultrasound assisted synthesis of nano-rod embedded petal designed α-Bi2O3-ZnO nanoparticles and their ultra-responsive visible light induced photocatalytic properties, J. Photochem. Photobiol. A, 335(2017), p. 217.
      [15]
      F. Chouikh, Y. Beggah, N. Tabet, N. Ariche, and M.S. Aida, Highly oriented and conducting Bi doped ZnO (BZO) layers chemically sprayed using nitrogen gas carrier, Mater. Sci. Semicond. Process., 64(2017), p. 39.

    Catalog


    • /

      返回文章
      返回