留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 1
Jan.  2018
数据统计

分享

计量
  • 文章访问数:  717
  • HTML全文浏览量:  132
  • PDF下载量:  36
  • 被引次数: 0
Nathália Vieceli, Carlos A. Nogueira, Manuel F. C. Pereira, Fernando O. Durão, Carlos Guimarães,  and Fernanda Margarido, Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 11-19. https://doi.org/10.1007/s12613-018-1541-7
Cite this article as:
Nathália Vieceli, Carlos A. Nogueira, Manuel F. C. Pereira, Fernando O. Durão, Carlos Guimarães,  and Fernanda Margarido, Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 11-19. https://doi.org/10.1007/s12613-018-1541-7
引用本文 PDF XML SpringerLink
研究论文

Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

  • 通讯作者:

    Nathália Vieceli    E-mail: nathalia.vieceli@tecnico.ulisboa.pt

  • The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
  • Research Article

    Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

    + Author Affiliations
    • The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
    • loading
    • [1]
      T.T Hien-Dinh, V.T. Luong, R. Gieré, and T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153(2015), p. 154.
      [2]
      V.T. Luong, D.G. Kang, J.W. An, J.M. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p 54.
      [3]
      V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim, and T. Tran, Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 141(2014), p. 8.
      [4]
      Q. Yan, X. Li, Z. Yin, Z. Wang, U. Guo, W. Peng, and Q. Hu, A novel process for extracting lithium from lepidolite, Hydrometallurgy, 121-124(2012), p. 54.
      [5]
      Q. Yan, X. Li, Z. Wang, X. Wu, H. Guo, Q. Hu, W. Peng, and J. Wang, Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118(2012), p. 116.
      [6]
      Q. Yan, X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, Q. Hu, and W. Peng, Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111(2012), p. 1.
      [7]
      Q. Yan, X. Li, Z. Wang, J. Wang, H. Guo, Q. Hu, W. Peng, and X. Wu, Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), p. 1753.
      [8]
      J. Kondás, and J. Jandová, Lithium extraction from zinnwaldite wastes after gravity dressing of Sn-W ores, Acta Metall. Slovaca, 12(2006), p. 197.
      [9]
      J. Jandová, H.N. Vu, T. Belková, P. Dvorák, and J. Kondás, Obtaining Li2CO3 from zinnwaldite wastes, Ceram. Silik., 53(2009), No. 2, p. 108.
      [10]
      H. Vu, J. Bernardi, J. Jandová, L. Vaculíková, and V. Goliáš, Lithium and rubidium extraction from zinnwaldite by alkali digestion process:Sintering mechanism and leaching kinetics, Int. J. Miner. Process., 123(2013), p. 9.
      [11]
      J. Jandová, P. Dvorak, H.N. and Vu, Processing of zinnwaldite waste to obtain Li2CO3, Hydrometallurgy, 103(2010), p. 12.
      [12]
      O. Sitando and P.L. Crouse, Processing of a Zimbabwean petalite to obtain lithium carbonate, Int. J. Miner. Process., 102-103(2012), p. 45.
      [13]
      L.I. Barbosa, G. Valente, R.P. Orosco, and J.A. González, Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56(2014), p. 29.
      [14]
      E. Siame and R.D. Pascoe, Extraction of lithium from micaceous waste from china clay production, Miner. Eng., 24(2011), p. 1595.
      [15]
      N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 62.
      [16]
      N. Vieceli, C.A. Nogueira, M.F.C. Pereira, A.P.S. Dias, F.O. Durão, C. Guimarães, and F. Margarido, Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1.
      [17]
      D.C. Montgomery, Design and Analysis of Experiments, 8th Ed., John Wiley & Sons, Inc., USA, New Jersey, 2012, p. 752.
      [18]
      Met-Chem Canada Inc., Feasibility Study on the Whabouchi Lithium Deposit and Hydromet Plant, NI 43-101 Technical Report, Prepared for Nemaska Lithium Inc, 2014.
      [19]
      T.N.A.S.T. Mustafa, S.R.R. Munusamy, D.N.U. Lan, and N.F.M. Yunos, Physical and structural transformations of Perlis carbonate rocks via mechanical activation route, Procedia Chem., 19(2016), p. 673.
      [20]
      P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, 1st Ed., Springer-Verlag Berlin Heidelberg, Berlin, 2008, p. 413.

    Catalog


    • /

      返回文章
      返回