留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 1
Jan.  2018
数据统计

分享

计量
  • 文章访问数:  550
  • HTML全文浏览量:  90
  • PDF下载量:  10
  • 被引次数: 0
Long Meng, Zhan-cheng Guo, Jing-kui Qu, Tao Qi, Qiang Guo, Gui-hua Hou, Peng-yu Dong, and Xin-guo Xi, Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 20-27. https://doi.org/10.1007/s12613-018-1542-6
Cite this article as:
Long Meng, Zhan-cheng Guo, Jing-kui Qu, Tao Qi, Qiang Guo, Gui-hua Hou, Peng-yu Dong, and Xin-guo Xi, Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 20-27. https://doi.org/10.1007/s12613-018-1542-6
引用本文 PDF XML SpringerLink
研究论文

Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

  • 通讯作者:

    Qiang Guo    E-mail: qguo@home.ipe.ac.cn

  • A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.
  • Research Article

    Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

    + Author Affiliations
    • A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.
    • loading
    • [1]
      B.Q. Wang, Q. Guo, G.Y. Wei, P.Y. Zhang, J.K. Qu, and T. Qi, Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia, Hydrometallurgy, 129-130(2012), p. 7.
      [2]
      B.Q. Wang, Q. Guo, J.K. Qu, and T. Qi, Optimization of conditions in atmospheric acid leaching of the water-leached residue of limonitic laterite after alkali-roasting, Chin. J. Process Eng., 12(2012), No. 3, p. 420.
      [3]
      Q. Guo, J.K. Qu, T. Qi, P.Y. Zhang, M.L. Shi, and L. Meng, A Method of Hydrochloric Acid Atmospheric Nickel Laterite Leaching Process of Ni/Co/Fe/Si Separation and Utilization of Clean Production, Chinese Patent, Appl.103757261, 2014.
      [4]
      Q. Guo, J.K. Qu, B.B. Han, P.Y. Zhang, Y.X. Song, and T. Qi, Innovative technology for processing saprolitic laterite ores by hydrochloric acid atmospheric pressure leaching, Miner. Eng., 71(2015), p. 1.
      [5]
      L. Meng, J.K. Qu, Q. Guo, K.Q. Xie, P.Y. Zhang, L.X. Han, G.Z. Zhang, and T. Qi, Recovery of Ni, Co, Mn, and Mg from nickel laterite ores using alkaline oxidation and hydrochloric acid leaching, Sep. Purif. Technol., 143(2015), p. 80.
      [6]
      L. Meng, J.K. Qu, K.Q. Xie, P.Y. Zhang, L.X. Han, G.Z. Zhang, and T. Qi, Preparation of Ni from nickel laterite leaching solution by anion membrane electrolysis method, Chin. J. Nonferrous Met., 25(2015), No. 4, p. 1093.
      [7]
      L. Lv, Y.G. Su, X.Q. Liu, H.Y. Zheng, and X.J. Wang, Synthesis of cellular-like Co3O4 nanocrystals with controlled structural, electronic and catalytic properties, J. Alloys Compd., 553(2013), p. 163.
      [8]
      E. Lester, G. Aksomaityte, J. Li, S. Gomez, G.G. Jose, and P. Martyn, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles, Prog. Cryst. Growth Charact. Mater., 58(2012), No.1, p. 3.
      [9]
      K. Deori, S.K. Ujjain, R.K. Sharma, and S. Deka, Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors, ACS Appl. Mater. Interfaces, 5(2013), No. 21, p. 10665.
      [10]
      H.J. Zhao, M.B. Zheng, D.M. Liu, X.H. Jiang, J. Tao, and J.M. Cao, Synthesis and characterization of nanoporous Co3O4 via a solvothermal-annealing route, Nanoporous Mater., 2008, p. 195. https://doi.org/10.1142/9789812779168_0022.
      [11]
      P.N. Shelke, Y.B. Khollam, K.R. Patil, S.D. Gunjal, M.T. Sarode, M.G. Takwale, S.R. Jadkar, and K.C. Mohite, Synthesis and optical properties of cobalt oxide (Co3O4) nanoclustered films produced by pulsed DC electrochemical deposition process, AIP Conf. Proc., 1391(2011), No. 1, p. 2541.
      [12]
      N. Zhang, Y.Q. Fan, H.Q. Fan, H.B. Shao, J.M. Wang., J.Q. Zhang, and C.A. Cao, Cross-linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution, ECS Electrochem. Lett., 1(2012), No. 2, p. H8.
      [13]
      G.B. Ma, S.H. Zhou, and S.S. Huang, Micromave hydrothermal synthesis and characterization of Co3O4 nanocrystals, Int. J. Mod. Phys. B, 19(2012), No. 15-17, p. 2841.
      [14]
      C. Shin, J. Manuel, D.S. Kim, H.S. Ryu, H.J. Ahn, and J.H. Ahn, Structural characterization and electrochemical properties of Co3O4 anode materials synthesized by a hydrothermal method, Nanoscale Res. Lett., 7(2012), p. 73.
      [15]
      K. Agilandeswari and A. Rubankumar, Synthesis, characterization, optical, and magnetic properties of Co3O4 nanoparticles by quick precipitation, Synth. React. Inorg. Met.-Org. Chem., 46(2016), No. 4, p. 502.
      [16]
      V.R. Mate, A. Jha, U.D. Joshi, K.R. Patil, M. Shirai, and C.V. Rode, Effect of preparation parameters on characterization and activity of Co3O4 catalyst in liquid phase oxidation of lignin model substrates, Appl. Catal. A, 487(2014), p. 130.
      [17]
      G.L. Xu, J.T. Li, L. Huang, W.F. Li, and S.G. Sun, Synthesis of Co3O4 nano-octahedra enclosed by {111} facets and their excellent lithium storage properties as anode material of lithium ion batteries, Nano Energy, 2(2013), No. 3, p. 394.
      [18]
      W. Wen, J.M. Wu, and M.H. Cao, Facile synthesis of a mesoporous Co3O4 network for Li-storage via thermal decomposition of an amorphous metal complex, Nanoscale, 6(2014), No. 21, p. 12476.
      [19]
      S. Kannan and C.S. Swamy, Synthesis and physicochemical characterization of cobalt aluminium hydrotalcite, J. Mater. Sci. Lett., 11(1992), p. 1585.
      [20]
      Y.S. Ding, L.P. Xu, C.H. Chen, X.F. Shen, and S.L. Sui, Syntheses of nanostructures of nobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method, J. Phys. Chem. C, 112(2008), No. 22, p. 8177.
      [21]
      L. Zhang, Z.B. Wang, X.W. Yu, C.H. Wu, and C. Shan, Thermal dissociation mechanism and morphological inheritance of basic cobalt carbonate, Mater. Sci. Eng. Powder Metall., 15(2010), No. 6, p. 679.
      [22]
      R.J. Yu, P.F. Tao, X.S. Zhou, and Y.P. Fang, Hydrothermal synthesis of cobalt-basic-carbonate nanobelts, J. Alloys Compd., 461(2008), No. 1-2, p. 574.
      [23]
      Y.D. Meng, D.R. Chen, and X.L. Jiao, Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites, J. Phys. Chem. B, 110(2006), No. 31, p. 15212.
      [24]
      Mostafa Y. Nassar, Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method, Mater. Lett., 94(2013), p. 112.
      [25]
      X.L. He, S.Z. Zhao, and S.H. Wu, Analytical Chemistry, Bei-jing University of Technology Press, Beijing, 1996, p. 239.
      [26]
      E. Lester, G. Aksomaityte, J. Li, S. Gomez, J. Gonzalez-Gonzalez, and M. Poliakoff, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles, Prog. Cryst. Growth Charact. Mater., 58(2012), No. 1, p. 3.
      [27]
      M.W. Huang, L. Song, and J.C. Zhang, Study on preparation of cobalt oxalate particles by liquid precipitation process, Inorg. Chem. Ind., 40(2008), No. 4, p. 31.
      [28]
      L.L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang, and X.W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates, Mater. Lett., 62(2008), No. 10-11, p. 1507.
      [29]
      S.J. Davarpanah, R. Karimian, and F. Piri, Synthesis and characterization of Co3O4 nanotubes to prepare variety of electrochemical biosensors, J. Appl. Biotechnol. Rep., 1(2014), No. 3, p. 117.
      [30]
      H.J. Guo, Q.M. Sun, X.H. Li, Z.X. Wang, and W.J. Peng, Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries, Trans. Nonferrous Met. Soc. China, 19(2009), No. 2, p. 372.
      [31]
      C.J. Wang, X. Dang, X.L. Ma, and B. Xu, Research for production technology of cobaltosic oxide, Met. Funct. Mater., 21(2014), No. 2, p. 36.
      [32]
      P. Justin, S.K. Meher, and G.R. Rao, Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis, J. Phys. Chem. C, 114(2010), No. 11, p. 5203.
      [33]
      S.K. Meher, P. Justin, and G.R. Rao, Nanoscale morphology dependent pseudocapacitance of NiO:Influence of intercalating anions during synthesis, Nanoscale, 3(2011), No. 2, p. 683.
      [34]
      L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, and Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun., 2(2011), p. 381.
      [35]
      L.B. Kong, Y.G. Li, M.C. Liu, Y.C. Luo, and L. Kang, Preparation and supercapacitive properties evaluation of Co3O4 nanoparticles, Appl. Chem. Ind., 44(2012), No. 1, p. 102.
      [36]
      L.J. Xie, K.X. Li, G.H. Sun, Z.G. Hu, C.X. Lv, J.L. Wang, and C.M. Zhang, Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material, J. Solid State Electrochem., 17(2013), No. 1, p. 55.

    Catalog


    • /

      返回文章
      返回