Cite this article as: |
Mostafa Amirjanand Mansour Bozorg, Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 94-101. https://doi.org/10.1007/s12613-018-1551-5 |
Mostafa Amirjan E-mail: mamirjan@nri.ac.ir,Mostafa.Amirjan@gmail.com
[1] |
X. Fang and Z. Fan, A novel approach to produce Al-alloy foams, J. Mater. Sci., 42(2007), No. 18, p. 7894.
|
[2] |
M. Amirjan and H. Khorsand, On the microstructure and properties of Al-Al2O3 nanocomposites hollow sphere structures,[in] Proceedings of the 5th International Congress on Nanoscience & Nanotechnology (ICNN2014), Tehran, 2014, p. 1441.
|
[3] |
D.X. Sun and Y.Y. Zhao, Static and dynamic energy absorption of al foams produced by a sintering and dissolution process, Metall. Mater. Trans. B, 34(2003), No. 1, p. 69.
|
[4] |
I. Jeon, K. Katou, T. Sonoda, T. Asahina, and K.J. Kang, Cell wall mechanical properties of closed-cell Al foam, Mech. Mater., 41(2009), No. 1, p. 60.
|
[5] |
L.C. Zhang and H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications:A review, Adv. Eng. Mater., 18(2016), No. 4, p. 463.
|
[6] |
Z. Razavi Hesabi, A. Simch, and S.M. Seyed Reihani, Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites, Mater. Sci. Eng. A, 428(2006), No. 1-2, p. 159.
|
[7] |
H. Mahboob, S.A. Sajjadi, and S.M. Zebarjad, Synthesis of Al-Al2O3 nano-composite by mechanical alloying and evaluation of the effect of ball milling time on the microstructure and mechanical properties,[in] Proceedings of the International Conference on MEMS and Nanotechnology (ICMN'08), Kuala Lumpur, 2008, Malaysia, p. 240.
|
[8] |
D. Poirier, R.A.L. Drew, M.L. Trudeau, and R. Gauvin, Fabrication and properties of mechanically milled alumina/aluminium nanocomposites, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7605.
|
[9] |
M. Tabandeh Khorshid, S.A. Jenabali Jahromi, and M.M. Moshksar, Mechanical properties of tri-Modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion, Mater. Des., 31(2010), No. 8, p. 1.
|
[10] |
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater., 113(2016), p. 56.
|
[11] |
Y.J. Liu, S.J. Li, W.T. Hou, S.G. Wang, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Electron beam melted beta-type Ti-24Nb-4Zr-8Sn porous structures with high strength-to-modulus ratio, J. Mater. Sci..Technol., 32(2016), No. 6, p. 505.
|
[12] |
D.X. Sun and Y.Y. Zhao, Phase changes in sintering of Al/Mg/NaCl compacts for manufacturing Al foams by the sintering and dissolution process, Mater. Lett., 59(2005), No. 1, p. 6.
|
[13] |
Y.Y. Zhao and D.X. Sun, A novel sintering-dissolusion process for manufacturing Al foams, Scripta Mater., 44(2001), p. 105.
|
[14] |
H.I. Suarez Andrade, M.E. Hernández Rojas, M.E. Palomar Pardavé, and S. Báez Pimiento, Manufacturing of aluminum foams using the sintering dissolution process, Rev. Colomb. Mater., 5(2013), p. 292.
|
[15] |
Y.Y. Zhao, Stochastic modelling of removability of NaCl in sintering and dissolution process to produce Al foams, J. Porous Mater., 10(2003), No. 2, p. 105.
|
[16] |
Z. Hussain and N.S.A. Suffin, Microstructure and mechanical behaviour of aluminium foam produced by sintering dissolution process using NaCl space holder, J. Eng. Sci., 7(2011), p. 37.
|
[17] |
A. Yavuz, İ. Yavuz, M.S. Başpınar, and H. Bayrakçeken, Effect of dissolving agent shape for the microstructural tailoring of sdp processed aluminum foams,[in] Proceeding of the 6th International Advanced Technologies Symposium (IATS'11), Elazığ, 2011, p. 22.
|
[18] |
E. Aghion and Y. Perez, Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology, Mater. Charact., 96(2014), p. 78.
|
[19] |
M. Rahimian, N. Parvin, and N. Ehsani, Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy, Mater. Sci. Eng. A, 527(2010), No. 4-5, p. 1031.
|
[20] |
A.B. Radwan, R.A. Shakoor, and A. Popelka, Improvement in properties of Ni-B coatings by the addition of mixed oxide nanoparticles, Int. J. Electrochem. Sci., 10(2015), p. 7548.
|
[21] |
T.S. Mahmoud, El-Sayed Y. El-Kady, and A.S. Merzen Al-Shihiri, Corrosion behaviour of Al/SiC and Al/Al2O3 nanocomposites, Mater. Res., 15(2012), No. 6, p. 903.
|
[22] |
N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, and C. Yang, Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes, Corros. Sci., 111(2016), p. 703.
|
[23] |
M. Kuruvilla, S. John, and A. Joseph, Electrochemical studies on the interaction of L-cysteine with metallic copper in sulfuric acid, Res. Chem. Intermed., 39(2013), No. 8, p. 3531.
|
[24] |
L.O. Olasunkanmi, M.M. Kabanda, and E.E. Ebenso, Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium:Electrochemical and quantum chemical studies, Physica E, 76(2016), p. 109.
|
[25] |
N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, and M.L. Wu, Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution, Corros. Sci., 102(2016), p. 484.
|
[26] |
M. Bozorg, T.S. Farahani, J. Neshati, Z. Chaghazardi, and G.M. Ziarani, Myrtus communis as green inhibitor of copper corrosion in sulfuric acid, Ind. Eng. Chem. Res., 53(2014), No. 11, p. 4295.
|