Cite this article as: |
Yun-long He, Rui-dong Xu, Shi-wei He, Han-sen Chen, Kuo Li, Yun Zhu, and Qing-feng Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 288-299. https://doi.org/10.1007/s12613-018-1572-0 |
Rui-dong Xu E-mail: rdxupaper@aliyun.com
[1] |
L.G. Ye, Y.J. Hu, Z.M. Xia, and Y.M. Chen, Separation of lead from crude antimony by pyro-refining process with NaPO3 addition, JOM, 68(2016), No. 6, p. 1541.
|
[2] |
Y.H. Zhao, X.B. Wang, X.H. Du, and C. Wang, Effects of Sb and heat treatment on the microstructure of Al-15.5wt%Mg2Si alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 653.
|
[3] |
J. Xie, W.T. Song, G.S. Cao, and X.B. Zhao, One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 542.
|
[4] |
X. Du, F.S. Qu, H. Liang, K. Li, H.R. Yu, L.M. Bai, and G.B. Li, Removal of antimony (Ⅲ) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process, Chem. Eng. J., 254(2014), p. 293.
|
[5] |
O.E. Linarez Pérez, M.A. Pérez, and M.L. Teijelo, Characterization of the anodic growth and dissolution of antimony oxide films, J. Electroanal. Chem., 632(2009), No. 1-2, p. 64.
|
[6] |
O.E. Linarez Pérez, M.D. Sánchez, and M.L. Teijelo, Characterization of growth of anodic antimony oxide films by ellipsometry and XPS, J. Electroanal. Chem., 645(2010), No. 2, p. 143.
|
[7] |
M.M. Hefny, W.A. Badawy, A.S. Mogoda, and M.S. El-Basiouny, Electrochemical behaviour of anodic oxide films on antimony in phosphate solutions, Electrochim. Acta, 30(1985), No. 8, p. 1017.
|
[8] |
L. Laitinen, H. Revitzer, G. Sundholm, J.K. Vilhunen, D. Pavlov, and M. Bojinov, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-Ⅲ. Identification of corrosion products after long-term polarization, Electrochim. Acta, 36(1991), No. 14, p. 2093.
|
[9] |
D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-I. Corrosion processes and anodic dissolution of antimony, Electrochim. Acta, 36(1991), No. 14, p. 2081.
|
[10] |
S. Laihonen, T. Laitinen, G. Sundholm, and A. Yli-Pentti, The anodic behavior of Sb and Pb-Sb eutectic in sulphuric acid solutions, Electrochim. Acta, 35(1990), No. 1, p. 229.
|
[11] |
A.S. Mogoda, Electrochemical behaviour of anodic oxide film on antimony in sulfuric acid solutions containing dichromate ions, Thin Solid Films, 394(2001), No. 1-2, p. 173.
|
[12] |
A.S. Mogoda and T.M.A. El-Haleem, Anodic oxide film formation on antimony and its currentless dissolution in sulphuric acid containing some monocarboxylic acids, Thin Solid Films, 441(2003), No. 1-2, p. 6.
|
[13] |
L.L. Wikstrom and K.Nobe, Electrode kinetics of antimony in alkaline solutions, J. Appl. Electrochem., 14(1984), No. 2, p. 257.
|
[14] |
M.V. Vojnović and D.B. Šepa, Charge transfer process Sb(Ⅲ)/Sb(V) in alkaline media, J. Electroanal. Chem. Interfacial Electrochem., 39(1972), No. 1, p. 157.
|
[15] |
I.A. Ammar and A. Saad, Anodic oxide film on antimony:Ⅱ. Parameters of film growth and dissolution kinetics in neutral and alkaline media, J. Electroanal. Chem. Interfacial Electrochem., 34(1972), No. 1, p. 159.
|
[16] |
N. Serrano, J.M. Díaz-Cruz, C. Ariño, and M. Esteban, Antimony-based electrodes for analytical determinations, TrAC Trends Anal. Chem., 77(2016), p. 203.
|
[17] |
G. Krepper, G.D. Pierini, M.F. Pistonesi, and M.S. Di Nezio, "In-situ" antimony film electrode for the determination of tetracyclines in Argentinean honey samples, Sens. Actuators B, 241(2017), p. 560.
|
[18] |
S.Q. Wei, M.L. Zhang, W. Han, Y.D. Yan, Y. Xue, M. Zhang, and B. Zhang, Electrochemical behavior of antimony and electrodeposition of Mg-Li-Sb alloys from chloride melts, Electrochim. Acta, 56(2011), No. 11, p. 4159.
|
[19] |
F.X. Xiao, D. Cao, J.W. Mao, X.N. Shen, and F.Z. Ren, Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 9.
|
[20] |
J.W. Han, C. Liang, W. Liu, W.Q. Qin, F. Jiao, and W.H. Li, Pretreatment of tin anode slime using alkaline pressure oxidative leaching, Sep. Purif. Technol., 174(2017), p. 389.
|
[21] |
W.F. Liu, T.Z. Yang, D.C. Zhang, L. Chen, and Y.N. Liu, Pretreatment of copper anode slime with alkaline pressure oxidative leaching, Int. J. Miner. Process., 128(2014), p. 48.
|
[22] |
B. Silwana, C.V.D. Horst, E. Iwuoha, and V. Somerset, Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles, Thin Solid Films, 592(2015), p. 124.
|
[23] |
D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behavior of the antimony electrode in sulphuric acid solutions-Ⅱ. Formation and properties of the primary anodic layer, Electrochim. Acta, 36(1991), No. 14, p. 2087.
|
[24] |
A.E.R. EI-Sayed, A.M. Shaker, and H.G. EI-Kareem, Anodic behaviour of antimony and antimony-tin alloys in alkaline solution, Bull. Chem. Soc. Jpn., 76(2003), No. 8, p. 1527.
|
[25] |
N.C. Verissimo, E.S. Freitas, N. Cheung, A. Garcia, and W.R. Osório, The effects of Zn segregation and microstructure length scale on the corrosion behavior of a directionally solidified Mg-25wt.%Zn alloy, J. Alloys Compd., 723(2017), p. 649.
|
[26] |
M. Mouanga and P. Berçot, Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part Ⅱ:Electrochemical analyses, Corros. Sci., 52(2010), No. 12, p. 3993.
|
[27] |
S. Fajardo, D.M. Bastidas, M. Criado, M. Criado, and J.M. Bastidas, Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides, Electrochim. Acta, 129(2014), p. 160.
|
[28] |
H. Luo, C.F. Dong, X.G. Li, and K. Xiao, The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochim. Acta, 64(2012), p. 211.
|
[29] |
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films. I. Theory, J. Electrochem. Soc., 157(2010), No. 12, p. C452.
|
[30] |
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55(2010), No. 21, p. 6218.
|
[31] |
J. Huang, Z. Li, B.Y. Liaw, and J.B. Zhang, Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations, J. Power Sources, 309(2016), p. 82.
|
[32] |
M. Metikošhuković and B. Lovreček, Electrochemical behaviour of the oxide covered antimony, Electrochim. Acta, 25(1980), No. 5, p. 717.
|
[33] |
N. Tabet, XPS investigation of the equilibrium segregation of antimony at germanium surface, J. Electron. Spectrosc. Relat. Phenom., 114-116(2001), p. 415.
|
[34] |
L. Santinacci, G.I. Sproule, S. Moisa, D. Landheer, X. Wu, A. Banu, T. Djenizian, P. Schmuki, and M.J. Graham, Growth and characterization of thin anodic oxide films on n-InSb(100) formed in aqueous solutions, Corros. Sci., 46(2004), No. 8, p. 2067.
|
[35] |
A. Darwiche, L. Bodenes, L. Madec, L. Monconduit, and H. Martinez, Impact of the salts and solvents on the SEI formation in Sb/Na batteries:An XPS analysis, Electrochim. Acta, 207(2016), p. 284.
|
[36] |
L. Bodenes, A. Darwiche, L. Monconduit, and H. Martinez, The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries:Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, J. Power Sources, 273(2015), p. 14.
|
[37] |
J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronic Inc., Minnesota, 1995, p. 237.
|