留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 3
Mar.  2018
数据统计

分享

计量
  • 文章访问数:  632
  • HTML全文浏览量:  116
  • PDF下载量:  13
  • 被引次数: 0
Yun-long He, Rui-dong Xu, Shi-wei He, Han-sen Chen, Kuo Li, Yun Zhu, and Qing-feng Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 288-299. https://doi.org/10.1007/s12613-018-1572-0
Cite this article as:
Yun-long He, Rui-dong Xu, Shi-wei He, Han-sen Chen, Kuo Li, Yun Zhu, and Qing-feng Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 288-299. https://doi.org/10.1007/s12613-018-1572-0
引用本文 PDF XML SpringerLink
研究论文

Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution

  • 通讯作者:

    Rui-dong Xu    E-mail: rdxupaper@aliyun.com

  • The effect of NaNO3 concentration on the anodic electrochemical behavior of antimony in 4 M NaOH solution was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The mechanism of NO3- concentration effect on the anodic electrochemical behavior of antimony was proposed, and its availability was confirmed by experimental results. The effect of NaNO3 on the anodic behavior of antimony in NaOH solution can be interpreted as a stepwise formation of different antimony compounds with different NaNO3 concentrations. Metallic antimony is apt to be oxidized into Sb2O3 within the NaNO3 concentration range of 0-0.48 M. NaSbO3 can be found on the antimony surface when the NaNO3 concentration increases gradually. Insoluable NaSbO3 inhibits the anodic oxidation of antimony due to its shielding effect on the mass transport of the reactants and products. Surface morphology and composition were analyzed by X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), and electron dispersion spectroscopy (EDS) analyses. Results indicate that the anodic oxidation layer is composed of Sb2O3, NaSbO3, and Sb. The atomic proportion of antimony in the form of NaSbO3 increases with increasing NaNO3 concentration due to the powerful oxidizing property of NaNO3.
  • Research Article

    Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution

    + Author Affiliations
    • The effect of NaNO3 concentration on the anodic electrochemical behavior of antimony in 4 M NaOH solution was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The mechanism of NO3- concentration effect on the anodic electrochemical behavior of antimony was proposed, and its availability was confirmed by experimental results. The effect of NaNO3 on the anodic behavior of antimony in NaOH solution can be interpreted as a stepwise formation of different antimony compounds with different NaNO3 concentrations. Metallic antimony is apt to be oxidized into Sb2O3 within the NaNO3 concentration range of 0-0.48 M. NaSbO3 can be found on the antimony surface when the NaNO3 concentration increases gradually. Insoluable NaSbO3 inhibits the anodic oxidation of antimony due to its shielding effect on the mass transport of the reactants and products. Surface morphology and composition were analyzed by X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), and electron dispersion spectroscopy (EDS) analyses. Results indicate that the anodic oxidation layer is composed of Sb2O3, NaSbO3, and Sb. The atomic proportion of antimony in the form of NaSbO3 increases with increasing NaNO3 concentration due to the powerful oxidizing property of NaNO3.
    • loading
    • [1]
      L.G. Ye, Y.J. Hu, Z.M. Xia, and Y.M. Chen, Separation of lead from crude antimony by pyro-refining process with NaPO3 addition, JOM, 68(2016), No. 6, p. 1541.
      [2]
      Y.H. Zhao, X.B. Wang, X.H. Du, and C. Wang, Effects of Sb and heat treatment on the microstructure of Al-15.5wt%Mg2Si alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 653.
      [3]
      J. Xie, W.T. Song, G.S. Cao, and X.B. Zhao, One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 542.
      [4]
      X. Du, F.S. Qu, H. Liang, K. Li, H.R. Yu, L.M. Bai, and G.B. Li, Removal of antimony (Ⅲ) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process, Chem. Eng. J., 254(2014), p. 293.
      [5]
      O.E. Linarez Pérez, M.A. Pérez, and M.L. Teijelo, Characterization of the anodic growth and dissolution of antimony oxide films, J. Electroanal. Chem., 632(2009), No. 1-2, p. 64.
      [6]
      O.E. Linarez Pérez, M.D. Sánchez, and M.L. Teijelo, Characterization of growth of anodic antimony oxide films by ellipsometry and XPS, J. Electroanal. Chem., 645(2010), No. 2, p. 143.
      [7]
      M.M. Hefny, W.A. Badawy, A.S. Mogoda, and M.S. El-Basiouny, Electrochemical behaviour of anodic oxide films on antimony in phosphate solutions, Electrochim. Acta, 30(1985), No. 8, p. 1017.
      [8]
      L. Laitinen, H. Revitzer, G. Sundholm, J.K. Vilhunen, D. Pavlov, and M. Bojinov, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-Ⅲ. Identification of corrosion products after long-term polarization, Electrochim. Acta, 36(1991), No. 14, p. 2093.
      [9]
      D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-I. Corrosion processes and anodic dissolution of antimony, Electrochim. Acta, 36(1991), No. 14, p. 2081.
      [10]
      S. Laihonen, T. Laitinen, G. Sundholm, and A. Yli-Pentti, The anodic behavior of Sb and Pb-Sb eutectic in sulphuric acid solutions, Electrochim. Acta, 35(1990), No. 1, p. 229.
      [11]
      A.S. Mogoda, Electrochemical behaviour of anodic oxide film on antimony in sulfuric acid solutions containing dichromate ions, Thin Solid Films, 394(2001), No. 1-2, p. 173.
      [12]
      A.S. Mogoda and T.M.A. El-Haleem, Anodic oxide film formation on antimony and its currentless dissolution in sulphuric acid containing some monocarboxylic acids, Thin Solid Films, 441(2003), No. 1-2, p. 6.
      [13]
      L.L. Wikstrom and K.Nobe, Electrode kinetics of antimony in alkaline solutions, J. Appl. Electrochem., 14(1984), No. 2, p. 257.
      [14]
      M.V. Vojnović and D.B. Šepa, Charge transfer process Sb(Ⅲ)/Sb(V) in alkaline media, J. Electroanal. Chem. Interfacial Electrochem., 39(1972), No. 1, p. 157.
      [15]
      I.A. Ammar and A. Saad, Anodic oxide film on antimony:Ⅱ. Parameters of film growth and dissolution kinetics in neutral and alkaline media, J. Electroanal. Chem. Interfacial Electrochem., 34(1972), No. 1, p. 159.
      [16]
      N. Serrano, J.M. Díaz-Cruz, C. Ariño, and M. Esteban, Antimony-based electrodes for analytical determinations, TrAC Trends Anal. Chem., 77(2016), p. 203.
      [17]
      G. Krepper, G.D. Pierini, M.F. Pistonesi, and M.S. Di Nezio, "In-situ" antimony film electrode for the determination of tetracyclines in Argentinean honey samples, Sens. Actuators B, 241(2017), p. 560.
      [18]
      S.Q. Wei, M.L. Zhang, W. Han, Y.D. Yan, Y. Xue, M. Zhang, and B. Zhang, Electrochemical behavior of antimony and electrodeposition of Mg-Li-Sb alloys from chloride melts, Electrochim. Acta, 56(2011), No. 11, p. 4159.
      [19]
      F.X. Xiao, D. Cao, J.W. Mao, X.N. Shen, and F.Z. Ren, Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 9.
      [20]
      J.W. Han, C. Liang, W. Liu, W.Q. Qin, F. Jiao, and W.H. Li, Pretreatment of tin anode slime using alkaline pressure oxidative leaching, Sep. Purif. Technol., 174(2017), p. 389.
      [21]
      W.F. Liu, T.Z. Yang, D.C. Zhang, L. Chen, and Y.N. Liu, Pretreatment of copper anode slime with alkaline pressure oxidative leaching, Int. J. Miner. Process., 128(2014), p. 48.
      [22]
      B. Silwana, C.V.D. Horst, E. Iwuoha, and V. Somerset, Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles, Thin Solid Films, 592(2015), p. 124.
      [23]
      D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behavior of the antimony electrode in sulphuric acid solutions-Ⅱ. Formation and properties of the primary anodic layer, Electrochim. Acta, 36(1991), No. 14, p. 2087.
      [24]
      A.E.R. EI-Sayed, A.M. Shaker, and H.G. EI-Kareem, Anodic behaviour of antimony and antimony-tin alloys in alkaline solution, Bull. Chem. Soc. Jpn., 76(2003), No. 8, p. 1527.
      [25]
      N.C. Verissimo, E.S. Freitas, N. Cheung, A. Garcia, and W.R. Osório, The effects of Zn segregation and microstructure length scale on the corrosion behavior of a directionally solidified Mg-25wt.%Zn alloy, J. Alloys Compd., 723(2017), p. 649.
      [26]
      M. Mouanga and P. Berçot, Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part Ⅱ:Electrochemical analyses, Corros. Sci., 52(2010), No. 12, p. 3993.
      [27]
      S. Fajardo, D.M. Bastidas, M. Criado, M. Criado, and J.M. Bastidas, Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides, Electrochim. Acta, 129(2014), p. 160.
      [28]
      H. Luo, C.F. Dong, X.G. Li, and K. Xiao, The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochim. Acta, 64(2012), p. 211.
      [29]
      B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films. I. Theory, J. Electrochem. Soc., 157(2010), No. 12, p. C452.
      [30]
      B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55(2010), No. 21, p. 6218.
      [31]
      J. Huang, Z. Li, B.Y. Liaw, and J.B. Zhang, Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations, J. Power Sources, 309(2016), p. 82.
      [32]
      M. Metikošhuković and B. Lovreček, Electrochemical behaviour of the oxide covered antimony, Electrochim. Acta, 25(1980), No. 5, p. 717.
      [33]
      N. Tabet, XPS investigation of the equilibrium segregation of antimony at germanium surface, J. Electron. Spectrosc. Relat. Phenom., 114-116(2001), p. 415.
      [34]
      L. Santinacci, G.I. Sproule, S. Moisa, D. Landheer, X. Wu, A. Banu, T. Djenizian, P. Schmuki, and M.J. Graham, Growth and characterization of thin anodic oxide films on n-InSb(100) formed in aqueous solutions, Corros. Sci., 46(2004), No. 8, p. 2067.
      [35]
      A. Darwiche, L. Bodenes, L. Madec, L. Monconduit, and H. Martinez, Impact of the salts and solvents on the SEI formation in Sb/Na batteries:An XPS analysis, Electrochim. Acta, 207(2016), p. 284.
      [36]
      L. Bodenes, A. Darwiche, L. Monconduit, and H. Martinez, The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries:Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, J. Power Sources, 273(2015), p. 14.
      [37]
      J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronic Inc., Minnesota, 1995, p. 237.

    Catalog


    • /

      返回文章
      返回