留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 3
Mar.  2018
数据统计

分享

计量
  • 文章访问数:  428
  • HTML全文浏览量:  60
  • PDF下载量:  12
  • 被引次数: 0
Shi-na Li, Rui-xin Ma, and Cheng-yan Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 310-314. https://doi.org/10.1007/s12613-018-1574-y
Cite this article as:
Shi-na Li, Rui-xin Ma, and Cheng-yan Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 310-314. https://doi.org/10.1007/s12613-018-1574-y
引用本文 PDF XML SpringerLink
研究论文

Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp

  • 通讯作者:

    Rui-xin Ma    E-mail: maruixin@ustb.edu.cn

    Cheng-yan Wang    E-mail: wchy3207@sina.com

  • The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.
  • Research Article

    Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp

    + Author Affiliations
    • The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.
    • loading
    • [1]
      M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5(2013), p. 263.
      [2]
      F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, and Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting, J. Am. Chem. Soc., 136(2014), No. 19, p. 6826.
      [3]
      M. Marchelek, E. Grabowska, T. Klimczuk, W. Lisowski, and A. Zaleska-Medynska, Various types of semiconductor photocatalysts modified by CdTe QDs and Pt NPs for toluene photooxidation in the gas phase under visible light, Appl. Surf. Sci., 393(2017), p. 262.
      [4]
      S.A. Ansari, Z. Khan, M.O. Ansari, and M.H. Cho, Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications, RSC Adv., 6(2016), No. 50, p. 44616.
      [5]
      S.K. Lakhera, R. Venkataramana, A. Watts, M. Anpo, and B. Neppolian, Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes, Res. Chem. Intermed., 43(2017), No. 9, p. 5091.
      [6]
      S.G. Babu, R. Vinoth, B. Neppolian, D.D. Dionysiou, and M. Ashokkumar, Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst, J. Hazard. Mater., 291(2015), p. 83.
      [7]
      S.G. Babu, R. Vinoth, P.S. Narayana, D. Bahnemann, and B. Neppolian, Reduced graphene oxide wrapped Cu2O supported on C3N4:An efficient visible light responsive semiconductor photocatalyst, APL Mater., 3(2015), No. 10, art. No. 104415.
      [8]
      S.K. Lakhera, A. Watts, H.Y. Hafeez, and B. Neppolian, Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity, Catal. Today, 300(2018), p. 58.
      [9]
      Q. Jia, Y.C. Zhang, J. Li, Y. Chen, and B. Xu, Hydrothermal synthesis of Cu2 WS4 as a visible-light-activated photocatalyst in the reduction of aqueous Cr(VI), Mater. Lett., 117(2014), No.7, p. 24.
      [10]
      F. Ozel, E. Aslan, A. Sarilmaz, and P.I. Hatay, Hydrogen evolution catalyzed by Cu2WS4 at liquid-liquid interfaces, ACS Appl. Mater. Interfaces, 8(2016), No. 39, p. 25881.
      [11]
      A.P. Tiwari, D. Kim, Y. Kim, O. Prakash, and H. Lee, Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction, Nano Energy, 28(2016), p. 366.
      [12]
      K. Zhang, W. Chen, Y. Lin, H. Chen, Y.A. Haleem, C. Wu, F. Ye, T.X. Wang, and L. Song, Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange, Nanoscale, 7(2015), No. 3, p. 17998.
      [13]
      H.P. Chen, K. Zhang, W.X. Chen, I. Ali, P. Wu, D.B. Liu, and S. Li, Raman scattering of single crystal Cu2MoS4 nanosheet, AIP Adv., 5(2015), No. 3, art. No. 037141.
      [14]
      E.A. Pruss, B.S. Snyder, and A.M. Stacy, A new layered ternary sulfide:formation of Cu2WS4 by reaction of WS42- and Cu+ ions, Angew. Chem. Int. Ed., 32(1993), No. 2, p. 256.
      [15]
      C.J. Crossland, P.J. Hickey, and J.S.O. Evans, The synthesis and characterisation of Cu2MX4(M=W or Mo; X=S, Se or S/Se) materials prepared by a solvothermal method, J. Mater. Chem., 15(2005), No. 34, p. 3452.
      [16]
      H.R. Liang and L.J. Guo, Synthesis, characterization and photocatalytic performances of Cu2MoS4, Int. J. Hydrogen Energy, 35(2010), No. 13, p. 7104.
      [17]
      D.W. Jing, M.C. Liu, Q.Y. Chen, and L.J. Guo, Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process, Int. J. Hydrogen Energy, 35(2010), No. 16, p. 8521.
      [18]
      P.D. Tran, N. Mai, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, and J. Barber, Copper molybdenum sulfide:a new efficient electrocatalyst for hydrogen production from water, Energy Environ. Sci., 5(2012), No. 10, p. 8912.
      [19]
      K. Zhang, W.X. Chen, Y. Wang, J. Li, H.P. Chen, Z.Y. Gong, S. Chang, F. Ye, T.X. Wang, W.S. Chu, C.W. Zou, and L. Song, Cube-like Cu2MoS4 photocatalysts for visible light-driven degradation of methyl orange, AIP Adv., 5(2015), No. 7, art. No. 077130.
      [20]
      B.B. Chen, D.K. Ma, Q.P. Ke, W. Chen, and S.M. Huang, Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering, Phys. Chem. Chem. Phys., 18(2016), No. 9, p. 6713.
      [21]
      R.X. Ma, F. Yang, S.N. Li, X.Y. Zhang, X. Li, S.Y. Cheng, and Z.L. Liu, Fabrication of Cu2ZnSn(S,Se)4(CZTSSe) absorber films based on solid-phase synthesis and blade coating processes, Appl. Surf. Sci., 368(2016), p. 8.
      [22]
      W.X. Chen, H.P. Chen, H.Z. Zhu, Q.Q. Gao, J. Luo, Y. Wang, S. Zhang, K. Zhang, C.G. Wang, Y.J. Xiong, Y.F. Wu, X.S. Zheng, W.S. Chu, L. Song, and Z.Y. Wu, Solvothermal synthesis of ternary Cu2MoS4 nanosheets:structural characterization at the atomic level, Small, 10(2014), No. 22, p. 4637.

    Catalog


    • /

      返回文章
      返回