Cite this article as: |
Shi-na Li, Rui-xin Ma, and Cheng-yan Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 310-314. https://doi.org/10.1007/s12613-018-1574-y |
Rui-xin Ma E-mail: maruixin@ustb.edu.cn
Cheng-yan Wang E-mail: wchy3207@sina.com
[1] |
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5(2013), p. 263.
|
[2] |
F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, and Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting, J. Am. Chem. Soc., 136(2014), No. 19, p. 6826.
|
[3] |
M. Marchelek, E. Grabowska, T. Klimczuk, W. Lisowski, and A. Zaleska-Medynska, Various types of semiconductor photocatalysts modified by CdTe QDs and Pt NPs for toluene photooxidation in the gas phase under visible light, Appl. Surf. Sci., 393(2017), p. 262.
|
[4] |
S.A. Ansari, Z. Khan, M.O. Ansari, and M.H. Cho, Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications, RSC Adv., 6(2016), No. 50, p. 44616.
|
[5] |
S.K. Lakhera, R. Venkataramana, A. Watts, M. Anpo, and B. Neppolian, Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes, Res. Chem. Intermed., 43(2017), No. 9, p. 5091.
|
[6] |
S.G. Babu, R. Vinoth, B. Neppolian, D.D. Dionysiou, and M. Ashokkumar, Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst, J. Hazard. Mater., 291(2015), p. 83.
|
[7] |
S.G. Babu, R. Vinoth, P.S. Narayana, D. Bahnemann, and B. Neppolian, Reduced graphene oxide wrapped Cu2O supported on C3N4:An efficient visible light responsive semiconductor photocatalyst, APL Mater., 3(2015), No. 10, art. No. 104415.
|
[8] |
S.K. Lakhera, A. Watts, H.Y. Hafeez, and B. Neppolian, Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity, Catal. Today, 300(2018), p. 58.
|
[9] |
Q. Jia, Y.C. Zhang, J. Li, Y. Chen, and B. Xu, Hydrothermal synthesis of Cu2 WS4 as a visible-light-activated photocatalyst in the reduction of aqueous Cr(VI), Mater. Lett., 117(2014), No.7, p. 24.
|
[10] |
F. Ozel, E. Aslan, A. Sarilmaz, and P.I. Hatay, Hydrogen evolution catalyzed by Cu2WS4 at liquid-liquid interfaces, ACS Appl. Mater. Interfaces, 8(2016), No. 39, p. 25881.
|
[11] |
A.P. Tiwari, D. Kim, Y. Kim, O. Prakash, and H. Lee, Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction, Nano Energy, 28(2016), p. 366.
|
[12] |
K. Zhang, W. Chen, Y. Lin, H. Chen, Y.A. Haleem, C. Wu, F. Ye, T.X. Wang, and L. Song, Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange, Nanoscale, 7(2015), No. 3, p. 17998.
|
[13] |
H.P. Chen, K. Zhang, W.X. Chen, I. Ali, P. Wu, D.B. Liu, and S. Li, Raman scattering of single crystal Cu2MoS4 nanosheet, AIP Adv., 5(2015), No. 3, art. No. 037141.
|
[14] |
E.A. Pruss, B.S. Snyder, and A.M. Stacy, A new layered ternary sulfide:formation of Cu2WS4 by reaction of WS42- and Cu+ ions, Angew. Chem. Int. Ed., 32(1993), No. 2, p. 256.
|
[15] |
C.J. Crossland, P.J. Hickey, and J.S.O. Evans, The synthesis and characterisation of Cu2MX4(M=W or Mo; X=S, Se or S/Se) materials prepared by a solvothermal method, J. Mater. Chem., 15(2005), No. 34, p. 3452.
|
[16] |
H.R. Liang and L.J. Guo, Synthesis, characterization and photocatalytic performances of Cu2MoS4, Int. J. Hydrogen Energy, 35(2010), No. 13, p. 7104.
|
[17] |
D.W. Jing, M.C. Liu, Q.Y. Chen, and L.J. Guo, Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process, Int. J. Hydrogen Energy, 35(2010), No. 16, p. 8521.
|
[18] |
P.D. Tran, N. Mai, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, and J. Barber, Copper molybdenum sulfide:a new efficient electrocatalyst for hydrogen production from water, Energy Environ. Sci., 5(2012), No. 10, p. 8912.
|
[19] |
K. Zhang, W.X. Chen, Y. Wang, J. Li, H.P. Chen, Z.Y. Gong, S. Chang, F. Ye, T.X. Wang, W.S. Chu, C.W. Zou, and L. Song, Cube-like Cu2MoS4 photocatalysts for visible light-driven degradation of methyl orange, AIP Adv., 5(2015), No. 7, art. No. 077130.
|
[20] |
B.B. Chen, D.K. Ma, Q.P. Ke, W. Chen, and S.M. Huang, Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering, Phys. Chem. Chem. Phys., 18(2016), No. 9, p. 6713.
|
[21] |
R.X. Ma, F. Yang, S.N. Li, X.Y. Zhang, X. Li, S.Y. Cheng, and Z.L. Liu, Fabrication of Cu2ZnSn(S,Se)4(CZTSSe) absorber films based on solid-phase synthesis and blade coating processes, Appl. Surf. Sci., 368(2016), p. 8.
|
[22] |
W.X. Chen, H.P. Chen, H.Z. Zhu, Q.Q. Gao, J. Luo, Y. Wang, S. Zhang, K. Zhang, C.G. Wang, Y.J. Xiong, Y.F. Wu, X.S. Zheng, W.S. Chu, L. Song, and Z.Y. Wu, Solvothermal synthesis of ternary Cu2MoS4 nanosheets:structural characterization at the atomic level, Small, 10(2014), No. 22, p. 4637.
|