留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 3
Mar.  2018
数据统计

分享

计量
  • 文章访问数:  571
  • HTML全文浏览量:  90
  • PDF下载量:  7
  • 被引次数: 0
Miao Wang, Wen-xian Wang, Hong-sheng Chen,  and Yu-li Li, Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 365-374. https://doi.org/10.1007/s12613-018-1580-0
Cite this article as:
Miao Wang, Wen-xian Wang, Hong-sheng Chen,  and Yu-li Li, Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites, Int. J. Miner. Metall. Mater., 25(2018), No. 3, pp. 365-374. https://doi.org/10.1007/s12613-018-1580-0
引用本文 PDF XML SpringerLink
研究论文

Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

  • 通讯作者:

    Wen-xian Wang    E-mail: wangwenxian@tyut.edu.cn

  • A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.
  • Research Article

    Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    + Author Affiliations
    • A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.
    • loading
    • [1]
      H.F. Huang, W. Zhang, M. De Los Reyes, X.L. Zhou, C. Yang, R. Xie, X.T. Zhou, P. Huai, and H.J. Xu, Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles, Mater. Des., 90(2016), p. 359.
      [2]
      H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, and Q.C. Wu, The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites, J. Alloys Compd., 632(2015), p. 23.
      [3]
      T.P.D. Rajan, R.M. Pillai, and B.C. Pai, Reinforcement coatings and interfaces in aluminium metal matrix composites, J. Mater. Sci., 33(1998), No. 14, p. 3491.
      [4]
      G. Çam and M. Koçak, Progress in joining of advanced materials, Int. Mater. Rev., 43(1998), No. 1, p. 1.
      [5]
      H. Arik, M. Aydin, A. Kurt, and M. Turker, Weldability of Al4C3-Al composites via diffusion welding technique, Mater. Des., 26(2005), No. 6, p. 555.
      [6]
      J.W. Ren, Y.J. Li, and T. Feng, Microstructure characteristics in the interface zone of Ti/Al diffusion bonding, Mater. Lett., 56(2002), No. 5, p. 647.
      [7]
      A. Elrefaey and W. Tillmann, Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer, J. Mater. Process. Technol., 209(2009), No. 5, p. 2746.
      [8]
      S.A. Sajjadi, H.R. Ezatpour, and H. Beygi, Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A, 528(2011), No. 29-30, p. 8765.
      [9]
      L.J. Wang, J.F. Zhang, and W. Jiang, Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 39(2013), p. 103.
      [10]
      A. Kothalkar, A.Cerit, G. Proust, S. Basu, M. Radovic, and I. Karaman, Interfacial study of NiTi-Ti3SiC2 solid state diffusion bonded joints, Mater. Sci. Eng. A, 622(2015), p. 168.
      [11]
      S. Rizzo, S. Grasso, M. Salvo, V. Casalegno, M.J. Reece, and M. Ferraris, Joining of C/SiC composites by spark plasma sintering technique, J. Eur. Ceram. Soc., 34(2014), p. 903.
      [12]
      D. Roy, D. Chakravarty, R. Mitra, and I. Manna, Effect of sintering on microstructure and mechanical properties of nano-TiO2 dispersed Al65Cu20Ti15 amorphous/nanocrystalline matrix composite, J. Alloys Compd., 460(2008), No. 1-2, p. 320.
      [13]
      V. Tsakiris, W. Kappel, D. Talpeanu, F. Albu, D. Patroi, and V. Marinescu, Joining of C/SiC materials by spark plasma sintering, Adv. Mater. Res., 1029(2014), p. 200.
      [14]
      P. Dong, Z. Wang, W. Wang, S.P. Chen, and J. Zhou, Understanding the spark plasma sintering from the view of materials joining, Scripta Mater., 123(2016), p. 118.
      [15]
      K. Chu, Z.F. Liu, C.C. Jia, H. Chen, X.B. Liang, W.J. Gao, W.H. Tian, and H. Guo, Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles, J. Alloys Compd., 490(2010), No. 1-2, p. 453.
      [16]
      Y.K. Kim, H.K. Kim, W.S. Jung, and B.J. Lee, Atomistic modeling of the Ti-Al binary system, Comput. Mater. Sci., 119(2016), p. 1.
      [17]
      Y.F. Yang, H.Y. Wang, Y.H. Liang, R.Y. Zhao, and Q. Jiang, Effect of nickel addition on the exothermic reaction of titanium and boron carbide, J. Mater. Res., 22(2007), No. 1, p. 169.
      [18]
      A. Inoue, A. Kitamura, and T. Masumoto, Ni-B and Co-B amorphous alloys with high boron concentration, Trans. Jpn. Inst. Met., 20(1979), No. 7, p. 404.
      [19]
      M. Singleton and P. Nash, The C-Ni (carbon-nickel) system, Bull. Alloy Phase Diagrams, 10(1989), No. 2, p. 121.
      [20]
      H.Y. Wang, L. Huang, and Q.C. Jiang, In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting, Mater. Sci. Eng. A, 407(2005), No. 1-2, p. 98.
      [21]
      Q.L. Lin and R. Sui, Wetting of B4C by molten Ni-Ti alloys at 1753K, J. Alloys Compd., 577(2013), p. 37.
      [22]
      Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, and Y.D. Wang, The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge, Scripta Mater., 81(2014), p. 56.
      [23]
      C. Feng, V. Guipont, M. Jeandin, O. Amsellem, F. Pauchet, R. Saenger, S. Bucher, and C. Iacob, B4C/Ni composite coatings prepared by cold spray of blended or CVD-coated powders, J. Therm. Spray Technol., 21(2012), No. 3-4, p. 561.
      [24]
      Y. Wei and J.W. Hutchinson, Models of interface separation accompanied by plastic dissipation at multiple scales, Int. J. Fract., 95(1999), No. 1-4, p. 1.
      [25]
      Q.L. Lin and R. Sui, Wetting of B4C by molten Ni at 1753K, J. Alloys Compd., 556(2013), p. 274.
      [26]
      C.A. Wert, Diffusion coefficient of C in α-iron, Phys. Rev., 79(1950), No. 4, p. 601.
      [27]
      P. Rajeshwari and T.K. Dey, Novel HDPE nanocomposites containing aluminum nitride (nano) particles:Micro-structural and nano-mechanical properties correlation, Mater. Chem. Phys., 190(2017), p. 175.
      [28]
      N.A. Sakharova, J.V. Fernandes, J.M. Antunes, and M.C. Oliveira, Comparison between Berkovich, Vickers and conical indentation tests:A three-dimensional numerical simulation study, Int. J. Solids Struct., 46(2009), No. 5, p. 1095.
      [29]
      P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li, An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation, J. Nucl. Mater., 375(2008), No. 1, p. 135.
      [30]
      K.W. Li, T. Wang, C. Di, and D.Q. Gong, Enhanced mechanical properties of NbCr2 Laves phase by spark plasma sintering, Vacuum, 131(2016), p. 28.
      [31]
      T. Borkar and R. Banerjee, Influence of spark plasma sintering (SPS) processing parameters on microstructure and mechanical properties of nickel, Mater. Sci. Eng. A, 618(2014), p. 176.

    Catalog


    • /

      返回文章
      返回