留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 4
Apr.  2018
数据统计

分享

计量
  • 文章访问数:  399
  • HTML全文浏览量:  48
  • PDF下载量:  13
  • 被引次数: 0
Ji-heng Li, Chao Yuan, Xing Mu, Xiao-qian Bao, and Xue-xu Gao, Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe-Ga rolled alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp. 444-452. https://doi.org/10.1007/s12613-018-1590-y
Cite this article as:
Ji-heng Li, Chao Yuan, Xing Mu, Xiao-qian Bao, and Xue-xu Gao, Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe-Ga rolled alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp. 444-452. https://doi.org/10.1007/s12613-018-1590-y
引用本文 PDF XML SpringerLink
研究论文

Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe-Ga rolled alloys

  • 通讯作者:

    Ji-heng Li    E-mail: lijh@ustb.edu.cn

  • The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1at% NbC-doped Fe83Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300℃ and 12.0% at 500℃ of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300℃ and 46.6% at 500℃. In the slabs for rolling, the introduction of <001>-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.
  • Research Article

    Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe-Ga rolled alloys

    + Author Affiliations
    • The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1at% NbC-doped Fe83Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300℃ and 12.0% at 500℃ of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300℃ and 46.6% at 500℃. In the slabs for rolling, the introduction of <001>-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.
    • loading
    • [1]
      A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A Lograsso, and D.L. Schlagel, Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys, IEEE Trans. Magn., 36(2000), No. 5, p. 3238.
      [2]
      A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, V.M. Keppens, G. Petculescu, and R.A. Taylor, Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys, J. Appl. Phys., 93(2003), No. 10, p. 8621.
      [3]
      R.A. Kellogg, A.M. Russell, T.A. Lograsso, A.B. Flatau, A.E. Clark, and M. Wun-Fogle, Tensile properties of magnetostrictive iron-gallium alloys, Acta Mater., 52(2004), No. 14, p. 5043.
      [4]
      B. Yoo, S.M. Na, A.B. Flatau, and D.J. Pines, Ultrasonic guided wave sensing performance of a magnetostrictive transducer using Galfenol flakes-polymer composite patches, J. Appl. Phys.,117(2015), No. 17, art. No. 17A916.
      [5]
      M.L. Huang, T.A. Lograsso, A.E. Clark, J.B. Restorff, and M. Wun-Fogle, Effect of interstitial additions on magnetostriction in Fe-Ga alloys, J. Appl. Phys., 103(2008), No. 7, art. No. 07B314.
      [6]
      L.L. Liao, M.L. Fang, J. Zhu, J.H. Li, and J. Wang, Influence of Al on the magnetostriction of Fe-Ga polycrystal alloys under compressive stress, Inter. J. Miner. Metal. Mater., 21(2014), No. 1, p. 52.
      [7]
      A.E. Clark, J.B. Restorff, M. Wun-Fogle, K.B. Hathaway, T.A. Lograsso, M. Huang, and E. Summers, Magnetostriction of ternary Fe-Ga-X (X=C, V, Cr, Mn, Co, Rh) alloys, J. Appl. Phys.,101(2007), No. 9, art. No. 09C507.
      [8]
      J.H. Li, X.X. Gao, J. Zhu, X.Q. Bao, T. Xia, and M.C. Zhang, Ductility, texture and large magnetostriction of Fe-Ga-based sheets, Scripta Mater., 63(2010), No. 2, p. 246.
      [9]
      S.M. Na and A.B. Flatau, Deformation behavior and magnetostriction of polycrystalline Fe-Ga-X (X=B, C, Mn, Mo, Nb, NbC) alloys, J. Appl. Phys., 103(2008), art. No. 07D304.
      [10]
      N. Srisukhumbowornchai and S. Guruswamy, Crystallographic textures in rolled and annealed Fe-Ga and FeAl alloys, Metall. Mater. Trans. A., 35(2004), No. 9, p. 2963.
      [11]
      S.M. Na, J.H. Yoo, and A.B. Flatau, Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide, IEEE T. Magn., 45(2009), No. 10, p. 4132.
      [12]
      S.M. Na and A.B. Flatau, Single grain growth and large magnetostriction in secondarily recrystallized Fe-Ga thin sheet with sharp Goss (011)
      [13]
      T. Hirano, Improvement of room temperature ductility of stoichiometric Ni3Al by unidirectional solidification, Acta Metall. Mater., 38(1990), No. 12, p. 2667.
      [14]
      Y.K. Mo, Z.H. Zhang, J.X. Xie, H.D. Fu, and H.J. Pan, Improved cold rolling workability of warm rolled Fe-6.5wt%Si electrical steel with columnar grains by annealing, Inter. J. Miner. Metal. Mater., 22(2015), No. 11, p. 1171.
      [15]
      C. Yuan, J.H. Li, W.L. Zhang, X.Q. Bao, and X.X. Gao, Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe-Ga alloys, J. Magn. Magn. Mater., 374(2015), p. 459.
      [16]
      C. Yuan, J.H. Li, W.L. Zhang, X.Q. Bao, and X.X. Gao, Secondary recrystallization behavior in the rolled columnar-grained Fe-Ga alloys, J. Magn. Magn. Mater., 391(2015), p. 145.
      [17]
      J.H. Li, X.X. Gao, X.M. Xiao, X.Q. Bao, and M.C. Zhang, Magnetostriction of <100> oriented Fe-Ga rods with large diameter, Rare Met., 34(2015), No. 7, p. 472.
      [18]
      C. Yuan, J.H. Li, W.L. Zhang, X.Q. Bao, and X.X. Gao, Microstructure and magnetostrictive performance of NbC-doped <100> oriented Fe-Ga alloys, Inter. J. Miner. Metal. Mater., 22(2015), No. 1, p. 52.
      [19]
      H.D. Chopra and M. Wuttig, Non-Joulian magnetostriction, Nature, 521(2015), No. 7552, p. 340.
      [20]
      T. Gladman, On the theory of the effect of precipitate particles on grain growth in metals, Proc. Roy. Soc. A, 294(1966), No. 1438, p. 298.
      [21]
      Y.L. Feng, Y. Li, J. Guo, J. Li, and T.T. Du, Effect of slab reheating temperature on recrystallization microstructure, texture and magnetic properties of Nb-containing grain-oriented silicon steel, J. Magn. Magn. Mater., 439(2017), p. 135.
      [22]
      M. Matsuo, Texture control in the production of grain oriented silicon steels, ISIJ Int., 29(1989), No. 10, p. 809.
      [23]
      N. Zhang, P. Yang, and W.M. Mao, Influence of columnar grains on the recrystallization texture evolution in Fe-3%Si electrical steel, Acta Metall. Sin., 48(2012), No. 3, p. 307.
      [24]
      orientation, Scripta Mater., 66(2012), No. 5, p. 307.

    Catalog


    • /

      返回文章
      返回