Cite this article as: |
Li Fan, Hai-yan Chen, Yao-hua Dong, Li-hua Dong, and Yan-sheng Yin, Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 716-728. https://doi.org/10.1007/s12613-018-1619-2 |
Hai-yan Chen E-mail: hychen@shmtu.edu.cn
[1] |
G.M. Martínez-Cazares, A. Almanza, E. Almanza, and D.E. Lozano, Enhanced hardenability and tempering resistance of AISI 4130 steel by Ni addition, Mater. Perform. Charact., 5(2016), No. 1, p. 202.
|
[2] |
I. Danaee, M.N. Khomami, and A.A. Attar, Corrosion behavior of AISI 4130 steel alloy in ethylene glycol-water mixture in presence of molybdate, Mater. Chem. Phys., 135(2012), No. 2-3, p. 658.
|
[3] |
N. Hutasoit, V. Luzin, A. Blicblau, W. Yan, M. Brandt, and R. Cottam, Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue test, Int. J. Fatigue, 72(2015), p. 42.
|
[4] |
S. Katakam, S. Santhanakrishnan, and N.B. Dahotre, Fe-based amorphous coatings on AISI 4130 structural steel for corrosion resistance, JOM, 64(2012), No. 6, p. 709.
|
[5] |
M.R. Fernández, A. García, J.M. Cuetos, R. González, A. Noriega, and M. Cadenas, Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC, Wear, 324-325(2015), p. 80.
|
[6] |
T.E. Abioye, D.G. McCartney, and A.T. Clare, Laser cladding of inconel 625 wire for corrosion protection, J. Mater. Process. Technol., 217(2015), p. 232.
|
[7] |
D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Opt. Laser Technol., 68(2015), p. 191.
|
[8] |
Q.H. Li, M.M. Savalani, Q.M. Zhang, and L. Huo, High temperature wear characteristics of TiC composite coatings formed by laser cladding with CNT additives, Surf. Coat. Technol., 239(2014), p. 206.
|
[9] |
J. Pereira, J. Zambrano, M. Licausi, and V. Amigó, Tribology and high temperature friction wear behavior of MCrAlY laser cladding coatings on stainless steel, Wear, 330-331(2015), p. 280.
|
[10] |
A. Kusmoko, D.P. Dunne, and H.J. Li, A comparative study for wear resistant of Stellite 6 coatings on nickel alloy substrate produced by laser cladding, HVOF and plasma spraying techniques, Int. J. Curr. Eng. Technol., 4(2014), No. 1, p. 32.
|
[11] |
P. Xu, C.X. Lin, C.Y. Zhou, and X.P. Yi, Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings, Surf. Coat. Technol., 238(2014), p. 9.
|
[12] |
J. Farmer, J.S. Choi, C. Saw, J. Haslam, D. Day, P. Hailey, and T.G. Lian, Iron-based amorphous metals: high-performance corrosion-resistant material development, Metall. Mater. Trans. A, 40(2009), No. 6, p. 1289.
|
[13] |
R.Q. Guo, C. Zhang, Y. Yang, Y. Peng, and L. Liu, Corrosion and wear resistance of a Fe-based amorphous coating in underground environment, Intermetallics, 30(2012), p. 94.
|
[14] |
S. Katakam, V. Kumar, S. Santhanakrishnan, R. Rajamure, P. Samimi, and N.B. Dahotre, Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion, J. Alloys Compd., 604(2014), p. 266.
|
[15] |
W.H. Liu, F.S. Shieu, and W.T. Hsiao, Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying, Surf. Coat. Technol., 249(2014), p. 24.
|
[16] |
Z.B. Zheng, Y.G. Zheng, W.H. Sun, and J.Q. Wang, Effect of applied potential on passivation and erosion-corrosion of a Fe-based amorphous metallic coating under slurry impingement, Corros. Sci., 82(2014), p. 115.
|
[17] |
M. Yasir, C. Zhang, W. Wang, P. Xu, and L. Liu, Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution, Mater. Des., 88(2015), p. 207.
|
[18] |
W. Wang, C. Zhang, P. Xu, M. Yasir, and L. Liu, Enhancement of oxidation and wear resistance of Fe-based amorphous coatings by surface modification of feedstock powders, Mater. Des., 73(2015), p. 35.
|
[19] |
C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, and L. Liu, Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating, Electrochim. Acta, 56(2011), No. 18, p. 6380.
|
[20] |
C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80.
|
[21] |
D. Zois, A. Lekatou, M. Vardavoulias, M., T. Vaimakis, and A.E. Karantzalis, Partially amorphous stainless steel coatings: Microstructure, annealing behavior and statistical optimization of spray parameters, Surf. Coat. Technol., 206(2011), No. 6, p. 1469.
|
[22] |
M. Oksa, S. Tuurna, and T. Varis, Increased lifetime for biomass and waste to energy power plant boilers with HVOF coatings: high temperature corrosion testing under chlorine-containing molten salt, J. Therm. Spray Technol., 22(2013), No. 5, p. 783.
|
[23] |
K. Chokethawai, D.G. McCartney, and P.H. Shipway, Microstructure evolution and thermal stability of an Fe-based amorphous alloy powder and thermally sprayed coatings, J. Alloys Compd., 480(2009), No. 2, p. 351.
|
[24] |
Y.Z. Lv, Y.F. Sun, J.Y. Zhao, G.G. Yu, J.J. Shen, and S.M. Hu, Effect of tungsten on microstructure and properties of high chromium cast iron, Mater. Des., 39(2012), p. 303.
|
[25] |
C. Scandian, C. Boher, J.D.B. de Mello, and F. Rézaï-Aria, Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: The relationship between microstructure and wear, Wear, 267(2009), No. 1-4, p. 401.
|
[26] |
Z.P. Lu, C.T. Liu, and W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett., 83(2003), No. 13, p. 2581.
|
[27] |
Z.K. Fu, H.H. Ding, W.J. Wang, Q.Y. Liu, J. Guo, and M.H. Zhu, Investigation on microstructure and wear characteristic of laser cladding Fe-based alloy on wheel/rail materials, Wear, 330-331(2015), p. 592.
|
[28] |
S.F. Zhou, X.Q. Dai, and H.Z. Zheng, Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding, Opt. Laser Technol., 44(2012), No. 1, p. 190.
|
[29] |
C. Guo, J.S. Zhou, J.M. Chen, J. Zhao, Y.J. Yu, and H.D. Zhou, High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC–Ni composite coatings, Wear, 270(2011), No. 7-8, p. 492.
|
[30] |
C.W. Yao, J. Huang, P.L. Zhang, Z.G. Li, and Y.X. Wu, Toughening of Fe-based laser-clad alloy coating, Appl. Surf. Sci., 257(2011), No. 6, p. 2184.
|
[31] |
B.R. Kumar, S. Sharma, P. Munda, and R.K. Minz, Structure and microstructure evolution of a ternary Fe–Cr–Ni alloy akin to super martensitic stainless steel, Mater. Des., 50(2013), p. 392.
|
[32] |
H. Zhang, Y. Zou, Z.D. Zou, and D.T. Wu, Microstructure and properties of Fe-based composite coating by laser cladding Fe–Ti–V–Cr–C–CeO2 powder, Opt. Laser Technol., 65(2015), p. 119.
|
[33] |
V. Ocelik, D. Matthews, and J.T.M. De Hosson, Sliding wear resistance of metal matrix composite layers prepared by high power laser, Surf. Coat. Technol., 197(2005), No. 2-3, p. 303.
|
[34] |
R. Chotěborský, P. Hrabě, M. Müller, J. Savková, and M. Jirka, Abrasive wear of high chromium Fe–Cr–C hardfacing alloys, Res. Agric. Eng., 54(2008), No. 4, p. 192.
|
[35] |
J.F. Archard, Surface topography and tribology, Tribology, 7(1974), No. 5, p. 213.
|
[36] |
X.L. Lu, X.B. Liu, P.C. Yu, Y.J. Zhai, S.J. Qiao, M.D. Wang, Y.G. Wang, and Y. Chen, Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding, Appl. Surf. Sci., 355(2015), p. 350.
|
[37] |
M.Y. Li, Y. Wang, B. Han, W.M. Zhao, and T. Han, Microstructure and properties of high chrome steel roller after laser surface melting, Appl. Surf. Sci., 255(2015), No. 17, p. 7574.
|
[38] |
C. Navas, R. Colaço, J. de Damborenea, and R. Vilar, Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings, Surf. Coat. Technol., 200(2006), No. 24, p. 6854.
|
[39] |
A. Davoodi, M. Pakshir, M. Babaiee, and G.R. Ebrahimi, A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media, Corros. Sci., 53(2011), No. 1, p. 399.
|
[40] |
Y.L. Zhou, J. Chen, Y. Xu, and Z.Y. Liu, Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl– containing environment, J. Mater. Sci. Technol., 29(2013), No. 2, p. 168.
|
[41] |
M.W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The role of chromium and molybdenum in passivation of amorphous Fe–Cr–Mo–P–C alloys in deaerated 1 M HCl, Corros. Sci., 38(1996), No. 12, p. 2137.
|