留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 7
Jul.  2018
数据统计

分享

计量
  • 文章访问数:  626
  • HTML全文浏览量:  119
  • PDF下载量:  23
  • 被引次数: 0
Hong-xiang Li, Shi-kai Qin, Ying-zhong Ma, Jian Wang, Yun-jin Liu, and Ji-shan Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 800-809. https://doi.org/10.1007/s12613-018-1628-1
Cite this article as:
Hong-xiang Li, Shi-kai Qin, Ying-zhong Ma, Jian Wang, Yun-jin Liu, and Ji-shan Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 800-809. https://doi.org/10.1007/s12613-018-1628-1
引用本文 PDF XML SpringerLink
研究论文

Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys

  • 通讯作者:

    Hong-xiang Li    E-mail: hxli@skl.ustb.edu.cn

  • The effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–xZn–0.2Ca alloys (x=0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) are investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstructure of the 0.6Zn alloy is composed of α-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain α-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, with increasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides an updated investigation of the alloy composition–microstructure–property relationships of different Zn-containing Mg–Zn–Ca alloys.
  • Research Article

    Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys

    + Author Affiliations
    • The effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–xZn–0.2Ca alloys (x=0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) are investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstructure of the 0.6Zn alloy is composed of α-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain α-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, with increasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides an updated investigation of the alloy composition–microstructure–property relationships of different Zn-containing Mg–Zn–Ca alloys.
    • loading
    • [1]
      M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27(2006), No. 9, p. 1728.
      [2]
      J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler, High-strength low-alloy (HSLA) Mg–Zn–Ca alloys with excellent biodegradation performance, JOM, 66(2014), No. 4, p. 566.
      [3]
      A.C. Hänzi, A.S. Sologubenko, P. Gunde, M. Schihammer, and P.J. Uggowitzer, Design considerations for achieving simultaneously high-strength and highly ductile magnesium alloys, Philos. Mag. Lett. 92(2012), No. 9, p. 417.
      [4]
      P. Gunde, A.C. Hanzi, A.S. Sologubenko, and P.J. Uggowitzer, High-strength magnesium alloys for degradable implant applications, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1047.
      [5]
      B.K. Kad and P.M. Hazzledine, Monte Carlo simulations of grain growth and Zener pinning, Mater. Sci. Eng. A, 238(1997), No. 1, p. 70.
      [6]
      M. Hillert, Inhibition of grain growth by second-phase particles, Acta Metall., 36(1988), No. 12, p. 3177.
      [7]
      P. Yin, N.F. Li, T. Lei, L. Liu, and C. Ouyang, Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys, J. Mater. Sci. Mater. Med., 24(2013), No. 6, p. 1365.
      [8]
      L. Geng, B.P. Zhang, A.B. Li, and C.C. Dong, Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy, Mater. Lett., 63(2009), No. 5, p. 557.
      [9]
      Y. Sun, B.P. Zhang, Y. Wang, L. Geng, and X.H. Jiao, Preparation and characterization of a new biomedical Mg–Zn–Ca alloy, Mater. Des., 34(2012), p. 58.
      [10]
      K. Kubok, L. Litynska-dobrzynska, J. Wojewoda-budka, A. Góral, and A. Debski, Investigation of structures in as-cast alloys from the Mg–Zn–Ca system, Arch. Metall. Mater., 58(2013), No. 2, p. 329.
      [11]
      L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, and H.J. Zhang, Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg–Zn–Ca alloy, Mater. Sci. Eng. A, 569(2013), p. 48.
      [12]
      Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lü, Microstructures and mechanical properties of as-cast and as-extruded Mg–4.50Zn–1.13Ca (wt%) alloys, Mater. Sci. Eng. A, 576(2013), p. 6.
      [13]
      M. Bamberger, G. Levi, and J.B.V. Sande, Precipitation hardening in Mg–Ca–Zn alloys, Metall. Mater. Trans. A, 37(2006), No. 2, p. 481.
      [14]
      H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys, Corros. Sci., 64(2012), p. 184.
      [15]
      Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The role of second phases in the corrosion behavior of Mg–5Zn alloy, Corros. Sci., 60(2012), p. 238.
      [16]
      H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, A. Fereidouni, and M.Y. Yahya, Characterization and corrosion behavior of biodegradable Mg–Ca and Mg–Ca–Zn implant alloys, Appl. Mech. Mater., 121-126(2012), p. 568.
      [17]
      J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler, Processing and microstructure-property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys, Acta Mater., 98(2015), p. 423.
      [18]
      B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, and C.C. Dong, Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures, Scripta Mater., 63(2010), No. 10, p. 1024.
      [19]
      J.B. Clark, The solid constitution in the Mg-rich region of the Mg–Ca–Zn phase diagram, Trans. Metall. Soc. AIME, 221(1961), p. 644.
      [20]
      T.V. Larionova, W.W. Park, and B.S. You, A ternary phase observed in rapidly solidified Mg–Ca–Zn alloys, Scripta Mater., 45(2001), No. 1, p. 7.
      [21]
      P.M. Jardim, G. Solórzano, and J.B. Sande, Precipitate crystal structure determination in melt spun Mg–1.5wt%Ca–6wt%Zn alloy, Microsc. Microanal., 8(2002), No. 6, p. 487.
      [22]
      Y.N. Zhang, D. Kevorkov, F. Bridier, and M. Medraj, Experimentalstudy of the Ca–Mg–Zn system using diffusion couples and key alloys, Sci. Technol. Adv. Mater. 12(2011), No. 2, art. No. 025003.
      [23]
      J.D. Cao, W. Thomas, R. Schäublin, and J.F. Löffler, Equilibrium ternary intermetallic phase in the Mg–Zn–Ca system, J. Mater. Res., 31(2016), No. 14, p. 2147.
      [24]
      Y.N. Zhang, D. Kevorkov, F. Bridier, and M. Medraj, Morphological and crystallographic characterizations of the Ca–Mg–Zn intermetallics appearing in ternary diffusion couples, Adv. Mater. Res., 409(2012), p. 387.
      [25]
      Y.N. Zhang, D. Kevorkov, X.D. Liu, F. Bridier, P. Chartrand, and M. Medraj, Homogeneity range and crystal structure of the Ca2Mg5Zn13 compound, J. Alloys Compd., 523(2012), p. 75.
      [26]
      H. Du, Z.J. Wei, X.W. Liu, and E. Zhang, Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application, Mater. Chem. Phys., 125(2011), No. 3, p. 568.
      [27]
      C.M. Liu, X.R. Zhu, and H.T. Zhou, Phase Diagrams of Magnesium Alloys, Central South University Press, Changsha, 2006, p. 186.
      [28]
      D. Zander and N.A. Zumdick, Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys, Corros. Sci., 93(2015), p. 222.
      [29]
      ] S.S. Li, B. Tang, and D.B. Zeng, Effects and mechanism of Ca on refinement of AZ91D alloy, J. Alloys Compd., 437(2007), No. 1-2, p. 317.
      [30]
      A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817.
      [31]
      G. Levi, S. Avraham, A. Ziberov, and M. Bamberger, Solidification, solution treatment and age hardening of a Mg–1.6 wt.% Ca–3.2 wt.% Zn alloy, Acta Mater., 54(2006), No. 2, p. 523.
      [32]
      Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones, Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys, Mater. Sci. Eng. C, 48(2015), p. 480.
      [33]
      E.L. Zhang and L. Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 111.

    Catalog


    • /

      返回文章
      返回