留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 7
Jul.  2018
数据统计

分享

计量
  • 文章访问数:  601
  • HTML全文浏览量:  89
  • PDF下载量:  10
  • 被引次数: 0
Bo Zhang, Wen Li, Hong Li, and Hai-feng Zhang, Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 817-823. https://doi.org/10.1007/s12613-018-1630-7
Cite this article as:
Bo Zhang, Wen Li, Hong Li, and Hai-feng Zhang, Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 817-823. https://doi.org/10.1007/s12613-018-1630-7
引用本文 PDF XML SpringerLink
研究论文

Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate

  • 通讯作者:

    Hong Li    E-mail: lihong@imr.ac.cn

  • The spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using the sessile drop method by continuous heating and holding for 1800 s at different temperatures in a high-vacuum furnace. The results showed that the Zr-based alloy melt could partly infiltrate the porous SiC substrate without pressure due to the effect of capillary pressure. Wettability and infiltration rates increased with increasing temperature, and interfacial reaction products (ZrC0.7 and TiC) were detected in the Zr-based alloy/SiC ceramic system, likely because of the reaction of the active elements Zr and Ti with elemental C. Furthermore, the redundant element Si diffused into the alloy melt.
  • Research Article

    Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate

    + Author Affiliations
    • The spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using the sessile drop method by continuous heating and holding for 1800 s at different temperatures in a high-vacuum furnace. The results showed that the Zr-based alloy melt could partly infiltrate the porous SiC substrate without pressure due to the effect of capillary pressure. Wettability and infiltration rates increased with increasing temperature, and interfacial reaction products (ZrC0.7 and TiC) were detected in the Zr-based alloy/SiC ceramic system, likely because of the reaction of the active elements Zr and Ti with elemental C. Furthermore, the redundant element Si diffused into the alloy melt.
    • loading
    • [1]
      K.R. Zhu, W. Jiang, J.L. Wu, and B. Zhang, Effect of Mo on properties of the industrial Fe–B–alloy–derived Fe–based bulk metallic glasses, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 926.
      [2]
      H.Y. Chi, Z.G. Yuan, Y. Wang, M. Zuo, D.G. Zhao, and H.R. Geng, Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60–xCu40Ndx alloy ribbons, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 708.
      [3]
      S.S. Wang, Y.L. Wang, Y.D. Wu, T. Wang, and X.D. Hui, High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 648.
      [4]
      W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 57(2012), No. 3, p. 487.
      [5]
      A. Inoue and N. Nishiyama, New bulk metallic glasses for applications as magnetic–sensing, chemical, and structural materials, MRS Bull., 32(2007), No. 8, p. 651.
      [6]
      Z.F. Zhang and J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett., 94(2005), No. 9, art. No. 094301.
      [7]
      M.Q. Jiang and L.H. Dai, On the origin of shear banding instability in metallic glasses, J. Mech. Phys. Solids, 57(2009), No. 8, p. 1267.
      [8]
      L.F. Liu, L.H. Dai, Y.L. Bai, and B.C. Wei, Initiation and propagation of shear bands in Zr–based bulk metallic glass under quasi–static and dynamic shear loadings, J. Non–Cryst. Solids, 351(2005), No. 40–42, p. 3259.
      [9]
      Z.F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(2003), No. 4, p. 1167.
      [10]
      H.M. Zhai, Y.H. Xu, Y. Du, H.F. Wang, and F. Liu, Strain rate sensitivity and deformation behavior in a Ti–based bulk metallic glass composite, J. Non–Cryst. Solids, 471(2017), p. 128.
      [11]
      F.F. Wu, K.C. Chan, S.H. Chen, S.S. Jiang, and G. Wang, ZrCu–based bulk metallic glass composites with large strain–hardening capability, Mater. Sci. Eng. A, 636(2015), p. 502.
      [12]
      B. Zhang, H.M. Fu, P.F. Sha, Z.W. Zhu, C. Dong, H.F. Zhang, and Z.Q. Hu, Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr–based metallic glass composites, Mater. Sci. Eng. A, 566(2013), p. 16.
      [13]
      B. Zhang, H.M. Fu, Z.W. Zhu, A.M. Wang, H. Li, C. Dong, Z.Q. Hu, and H.F. Zhang, Synthesis and properties of tungsten balls/Zr–base metallic glass composite, Mater. Sci. Eng. A, 540(2012), p. 207.
      [14]
      Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity, Scripta Mater., 62(2010), No. 5, p. 278.
      [15]
      H.F. Zhang, A.M. Wang, H. Li, W.S. Sun, B.Z. Ding, Z.Q. Hu, H.N. Cai, L. Wang, and W. Li, Quasi-static compressive property of metallic glass/porous tungsten bi-continuous phase composite, J. Mater. Res., 21(2006), No. 6, p. 1351.
      [16]
      Y. Sun, H.X. Zhang, A.M. Wang, H.M. Fu, Z.Q. Hu, C. Wen, and P. Hodgson, Mg-based metallic glass/titanium interpenetrating phase composite with high mechanical performance, Appl. Phys. Lett., 95(2009), No. 17, art. No. 171910.
      [17]
      Y. Sun, H.F. Zhang, A.M. Wang, H.M. Fu, Z.Q. Hu, C.E. Wen, and P. Hodgson, Compressive deformation and damage of Mg–based metallic glass interpenetrating phase composite containing 30–70vol% titanium, J. Mater. Res., 25(2010), No. 11, p. 2192.
      [18]
      X.Q. Zhang, L.L. Ma, Y.F. Xue, Q.B. Fan, Z.H. Nie, L. Wang, J.M. Yin, H.F. Zhang, and H.M. Fu, Temperature dependence of micro–deformation behavior of the porous tungsten/Zr–based metallic glass composite, J. Non–Cryst. Solids, 436(2016), p. 9.
      [19]
      X.D. Hui, J.L. Yu, M.L. Wang, W. Dong, and G.L. Chen, Wetting angle and infiltration velocity of Zr base bulk metallic glass composite, Intermetallics, 14(2006), No. 8–9, p. 931.
      [20]
      K. Sang, L. Weiler, and E. Aulbach, Wetting and pressureless infiltration in the CuTi/Al2O3 system under poor vacuum, Ceram. Int., 36(2010), No. 2, p. 719.
      [21]
      T. Gambaryan–Roisman, Liquids on porous layers: wetting, imbibition and transport processes, Curr. Opin. Colloid Interface Sci.., 19(2014), No. 4, p. 320.
      [22]
      S.B. Ren, X.Y. Shen, X.H. Qu, and X.B. He, Effect of Mg and Si on infiltration behavior of Al alloys pressureless infiltration into porous SiCp preforms, Int. J. Miner. Metall. Mater., 18(2011), No. 6, p. 703.
      [23]
      Q. Qi, Y. Liu, H. Zhang, Y.S. Li, H.Q. Liang, and Z.R. Huang, Processing and microstructure characterization of SiCp/Hastelloy(Ni–Mo–Cr) composites prepared by pressureless infiltration, J. Alloys Compd., 639(2015), p. 330.
      [24]
      K.P. Trumble, Spontaneous infiltration of non–cylindrical porosity: close–packed spheres, Acta Mater., 46(1998), No. 7, p. 2363.
      [25]
      B. Zhang, H. Li, Z.W. Zhu, H.M. Fu, A.M. Wang, C. Dong, H.F. Zhang, and Z.Q. Hu, Reaction induced anomalous temperature dependence of equilibrium contact angle of TiZr based glass forming melt on Al2O3 substrate, Mater. Sci. Technol., 29(2013), No. 3, p. 332.
      [26]
      A. Peker and W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett., 63(1993), No. 17, p. 2342.
      [27]
      J. Lu, G. Ravichandran, and W.L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain–rates and temperatures, Acta Mater., 51(2003), No. 12, p. 3429.
      [28]
      H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson, Quasi–static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys, Scripta Metall. Mater., 30(1994), No. 4, p. 429.
      [29]
      N. Liu, H.F. Zhang, H. Li, and Z.Q. Hu, Wetting phenomena in CuZr–based glassy alloys/W system, J. Alloys Compd., 494(2010), No. 1–2, p. 347.
      [30]
      S. Ding, J. Kong, and J. Schroers, Wetting of bulk metallic glass forming liquids on metals and ceramics, J. Appl. Phys., 110(2011), No. 4, art. No. 043508.
      [31]
      E. Candan, H.V. Atkinson, and H. Jones, Role of surface tension in relation to contact angle in determining threshold pressure for melt infiltration of ceramic powder compacts, Scripta Mater., 38(1998), No. 6, p. 999.
      [32]
      S.Y. Oh, J.A. Cornie, and K. Russell, Wetting of ceramic particulates with liquid aluminum alloys: Part I. Experimental techniques, Metall. Mater. Trans. A, 20(1989), No. 3, p. 527.
      [33]
      A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817.
      [34]
      D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3(2004), No. 10, p. 697.
      [35]
      H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature, 439(2006), No. 7075, p. 419.
      [36]
      X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y.Z. Wang, J.Y. Qin, and Z.K. Liu, Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy, Acta Mater., 57(2009), No. 2, p. 376.
      [37]
      H. Choi–Yim, R. Busch, and W.L. Johnson, The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites, J. Appl. Phys., 83(1998), No. 12, p. 7993.
      [38]
      B.Q. Zhang, Y.Z. Jia, S.T. Wang, G. Li, S.F. Shan, Z.J. Zhan, R.P. Liu, and W.K. Wang, Effect of silicon addition on the glass–forming ability of a Zr–Cu–based alloy, J. Alloys Compd., 468(2009), No. 1–2, p. 187.
      [39]
      Y.Q. Zeng, A. Inoue, N. Nishiyama, and M.W. Chen, Ni-rich Ni–Pd–P bulk metallic glasses with significantly improved glass-forming ability and mechanical properties by Si addition, Intermetallics, 18(2010), No. 9, p. 1790.
      [40]
      J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, and C.T. Liu, Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon, J. Alloys Compd., 478(2009), No. 1–2, p. 215.
      [41]
      Y. He, R.B. Schwarz, and D.G. Mandrus, Thermal expansion of bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, J. Mater. Res., 11(1996), p. 1136.
      [42]
      L.Z. Zhao, M.J. Zhao, X.M. Cao, C. Tian, W.P. Hu, and J.S. Zhang, Thermal expansion of a novel hybrid SiC foam–SiC particles–Al composites, Compos. Sci. Technol., 67(2007), No. 15, p. 3404.

    Catalog


    • /

      返回文章
      返回