Cite this article as: |
S. M. A. Haghi, S. A. Sajjadi, and A. Babakhani, In-situ fabrication of Al(Zn)-Al2O3 graded composite using the aluminothermic reaction during hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 832-839. https://doi.org/10.1007/s12613-018-1632-5 |
S. A. Sajjadi E-mail: sajjadi@um.ac.ir
[1] |
Y. Lian, X. Liu, Z. Xu, J. Song, and Y. Yu, Preparation and properties of CVD-W coated W/Cu FGM mock-ups, Fusion Eng. Des., 88(2013), No. 9-10, p. 1694.
|
[2] |
Y.G. Jung, S.W. Park, and S.C. Choi, Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM, Mater. Lett., 30(1997), No. 5-6, p. 339.
|
[3] |
B. Kieback, A. Neubrand, and H. Riedel, Processing techniques for functionally graded materials, Mater. Sci. Eng. A, 362(2003), No. 1-2, p. 81.
|
[4] |
B. Dikici and M. Gavgali, The effect of sintering time on synthesis of in situ submicron α-Al2O3 particles by the exothermic reactions of CuO particles in molten pure Al, J. Alloys Compd., 551(2013), p. 101.
|
[5] |
C. Feng and L. Froyen, In-situ P/M Al/(ZrB2+ Al2O3) MMCs: processing, microstructure and mechanical characterization, Acta Mater., 47(1999), No. 18, p. 4571.
|
[6] |
S. Razavi-Tousi,, R. Yazdani-Rad, and S.A. Manafi, Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al–Al2O3 nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1105.
|
[7] |
M. Tavoosi, F. Karimzadeh, M. Enayati, and A. Heidarpour, Bulk Al–Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods, J. Alloys Compd., 475(2009), No. 1-2, p.198.
|
[8] |
T.G. Durai, K. Das, and S. Das, Al(Zn)–4Cu/Al2O3 in-situ metal matrix composite synthesized by displacement reactions, J. Alloys Compd., 457(2008), No. 1-2, p. 435.
|
[9] |
G.H. Zahid, T. Azhar, M. Musaddiq, S.S. Rizvi, M. Ashraf, N. Hussain, and M. Iqbal, In-situ processing and aging behaviour of an aluminium/Al2O3 composite, Mater. Des., 32(2011), No. 3, p. 1630.
|
[10] |
P. Yu, C.J. Deng, N.G. Ma, M.Y. Yau, and D.H.L. Ng, Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite, Acta Mater., 51(2003), No. 12, p. 3445.
|
[11] |
B. Yang, M. Sun, G.S. Gan, C.G. Xu, Z.J. Huang, H.B. Zhang, and Z.Z. Fang, In-situ Al2O3 particle-reinforced Al and Cu matrix composites synthesized by displacement reactions, J. Alloys Compd., 494(2010), No. 1-2, p. 261.
|
[12] |
J.M. Wu and Z.Z. Li, Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture, J. Alloys Compd., 299(2000), No. 1-2, p. 9.
|
[13] |
Z.J. Huang, B. Yang, H. Cui, and J.S. Zhang, Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements, Mater. Sci. Eng. A, 351(2003), No. 1-2, p. 15.
|
[14] |
J.B. Fogagnolo, E.M.J.A. Pallone, D.R. Martin, C.S. Kiminami, C. Bolfarini, and W.J. Botta, Processing of Al matrix composites reinforced with Al–Ni compounds and Al2O3 by reactive milling and reactive sintering, J. Alloys Compd., 471(2009), No. 1-2, p. 448.
|
[15] |
Z.C. Chen, T. Takeda, and K. Ikeda, Microstructural evolution of reactive-sintered aluminum matrix composites, Compos. Sci. Technol., 68(2008), No. 10-11, p. 2245.
|
[16] |
J.J.S. Dilip, B.S.B. Reddy, S. Das, and K. Das, In-situ Al-based bulk nanocomposites by solid–state aluminothermic reaction in Al–Ti–O system, J. Alloys Compd., 475(2009), No. 1-2, p. 178.
|
[17] |
H.G. Zhu, J. Min, J.L. Li, Y.L. Ai, L.Q. Ge, and H.Z. Wang, In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al–ZrO2 system, Compos. Sci. Technol., 70(2010), No. 15, p. 2183.
|
[18] |
K.D. Woo and H.B. Lee, Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder, Mater. Sci. Eng. A, 449-451(2007), p. 829.
|
[19] |
T. Nagae, M. Mizubayashi, M. Yokota, M. Nose, T. Ishiguro, and S. Saji, Pulse current pressure sintering of Al/Al2O3 functionally graded material, [in] Proceedings of the International Symposium on Novel Materials Processing by Advanced Electromagnetic Energy Sources, Osaka, 2005, p. 301.
|
[20] |
H.P. Thirtha Prasad, and N. Chikkanna, Experimental investigation on the effect of particle loading on microstructural, mechanical and fractural properties of Al/Al2O3 functionally graded materials, Int. J. Adv. Eng. Technol., 2(2011), No. 4, p. 161.
|
[21] |
H. Tao, C.J. Deng, L.M. Zhang, and R.Z. Yuan, Fabrication of Al/Al2O3 composites and FGM, J. Mater. Sci. and Technol., 17(2001), No. 6, p. 646.
|
[22] |
A. Maleki, M. Panjepour, B. Niroumand, and M. Meratian, Mechanism of zinc oxide–aluminum aluminothermic reaction, J. Mater. Sci., 45(2010), No. 20, p. 5574.
|
[23] |
ASM International, ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, 1992.
|
[24] |
S. Hasani, M. Panjepour, and M. Shamanian, Oxidation and kinetic analysis of pure aluminum powder under nonisothermal condition, Open Access Scientific Reports, 1(2012), No. 8, p. 1.
|
[25] |
T.G. Durai, K. Das, and S. Das, Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates, Mater. Sci. Eng. A, 445-446(2006), p. 100.
|
[26] |
R.M. German, Powder Metallurgy Science, Metal Powder Industries, Princeton, 1984, p.279.
|
[27] |
H.G. Zhu, J. Min, J.L. Li, Y.L. Ai, L.Q. Ge, and H.Z. Wang, In situ fabrication of (α-Al2O3+ Al3Zr)/Al composites in an Al–ZrO2 system, Compos. Sci. Technol., 70(2010), No. 15, p. 2183.
|