留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 8
Aug.  2018
数据统计

分享

计量
  • 文章访问数:  512
  • HTML全文浏览量:  74
  • PDF下载量:  10
  • 被引次数: 0
Xiao-ping Ren and Zhan-qiang Liu, Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 937-949. https://doi.org/10.1007/s12613-018-1643-2
Cite this article as:
Xiao-ping Ren and Zhan-qiang Liu, Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 937-949. https://doi.org/10.1007/s12613-018-1643-2
引用本文 PDF XML SpringerLink
研究论文

Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy

  • 通讯作者:

    Zhan-qiang Liu    E-mail: melius@sdu.edu.cn

  • The microstructural changes in the machined surface layer of Ni-based super alloys essentially determine the final performance of the structural components of aerospace engines in which these alloys are used. In this work, multiscale metallurgical observations using scanning electron microscopy, electron-backscatter diffraction microscopy, and transmission electron microscopy were conducted to quantitatively characterize the microstructure of the machined subsurface. Next, to elucidate the factors that affect the formation of the refinement microstructure, the distributions of the deformation parameters (strain, strain rate, and temperature) in the machined subsurface were analyzed. A dislocation–twin interaction dynamic recrystallization mechanism for grain refinement during machining of Inconel 718 is proposed. Furthermore, microhardness evolution induced by grain refinement in the machined surface is evaluated. The results suggest that the gradient microstructure and the work hardening can be optimized by controlling the cutting parameters during turning of Inconel 718.
  • Research Article

    Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy

    + Author Affiliations
    • The microstructural changes in the machined surface layer of Ni-based super alloys essentially determine the final performance of the structural components of aerospace engines in which these alloys are used. In this work, multiscale metallurgical observations using scanning electron microscopy, electron-backscatter diffraction microscopy, and transmission electron microscopy were conducted to quantitatively characterize the microstructure of the machined subsurface. Next, to elucidate the factors that affect the formation of the refinement microstructure, the distributions of the deformation parameters (strain, strain rate, and temperature) in the machined subsurface were analyzed. A dislocation–twin interaction dynamic recrystallization mechanism for grain refinement during machining of Inconel 718 is proposed. Furthermore, microhardness evolution induced by grain refinement in the machined surface is evaluated. The results suggest that the gradient microstructure and the work hardening can be optimized by controlling the cutting parameters during turning of Inconel 718.
    • loading
    • [1]
      A. Thakur and S. Gangopadhyay, State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tools Manuf., 100(2016), p. 25.
      [2]
      D. Ulutan and T. Ozel, Machining induced surface integrity in titanium and nickel alloys: A review, Int. J. Mach. Tools Manuf., 51(2011), No. 3, p. 250.
      [3]
      I.S. Jawahir, E. Brinksmeier, R.M'Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A.D. Jayal, Surface integrity in material removal processes: Recent advances, CIRP Ann., 60(2011), p. 603.
      [4]
      C.W. Dai, W.F. Ding, J.H. Xu, C. Ding, and G.Q. Huang,Investigation on size effect of grain wear behavior during grinding nickel-based superalloy Inconel 718, Int. J. Adv. Manuf. Technol., 91(2017), No. 5-8, p. 2907.
      [5]
      W.F. Ding, L.C. Zhang, Z. Li, Y.J. Zhu, H.H. Su, and J.H. Xu, Review on grinding-induced residual stresses in metallic materials, Int. J. Adv. Manuf. Technol., 88(2017), No. 9-12, p. 2939.
      [6]
      W.F. Ding, B. Linke, Y.J. Zhu, Z. Li, Y.C. Fu, H.H. Su, and J.H. Xu, Review on monolayer CBN superabrasive wheels for grinding metallic materials, Chin. J. Aeronaut., 30(2017), No. 1, p. 109.
      [7]
      R. M'Saoubi, T. Larsson, J. Outeiro, Y. Guo, S. Suslov, C. Saldana, and S. Chandrasekar, Surface integrity analysis of machined Inconel 718 over multiple length scales, CIRP Ann., 61(2012), No. 1, p. 99.
      [8]
      J. Gubicza, L. Farbaniec, G. Csiszár, T. Sadat, H. Couque, and G. Dirras, Microstructure and strength of nickel subjected to large plastic deformation at very high strain rate, Mater. Sci. Eng. A, 662(2016), p. 9
      [9]
      A.M. Wusatowska-Sarnek, B. Dubiel, A. Czyrska-Filemonowicz, P.R. Bhowal, N.B. Salah, and J.E. Klemberg-Sapieha, Microstructural characterization of the white etching layer in icnkel-based superalloy, Metall. Mater. Trans. A, 42(2011), p. 3813.
      [10]
      X.C. Liu, H.W. Zhang, and K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science, 342(2013), No. 6156, p. 337.
      [11]
      M. Imran, P.T. Mativenga, A. Gholinia, and P.J. Withers, Evaluation of surface integrity in micro drilling process for nickel-based superalloy, Int. J. Adv. Manuf. Technol., 55(2011), No. 5-8, p. 465.
      [12]
      D.A. Huges and N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater., 48(2000), No. 11, p. 2985.
      [13]
      N.R. Tao, X.L. Wu, M.L. Sui, J. Lu, and K. Lu, Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy, J. Mater. Res., 19(2004), p. 1623.
      [14]
      S. Asgari, E. El-danaf, S.R. Kalidindi, and R.D. Doherty, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins, Metall. Mater. Trans. A, 28(1997), No. 9, p. 1781.
      [15]
      S. M'Guil, W. Wen, S. Ahzi, J.J. Gracio, and R.W. Davies, Analysis of shear deformation by slip and twinning in low and high/medium stacking fault energy fcc metals using the φ-model, Int. J. Plast., 68(2015), p. 132.
      [16]
      N.R. Tao and K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scripta Mater., 60(2009), No. 12, p.1039.
      [17]
      Y.X. Chen, Y.Q. Yang, Z.Q. Feng, B. Huang, X. Luo, and G.M. Zhao, Grain refinement and texture evolution during high precision machining of a Ni-based superalloy, Philos. Mag., 97(2017), No. 1, p.28.
      [18]
      D. Gao, Z.P. Hao, R.D. Han, Y.L. Chang, and J.N. Muguthu, Study of cutting deformation in machining nickel-based alloy Inconel 718, Int. J. Mach. Tools Manuf., 51(2011), No. 6, p. 520.
      [19]
      B. Mather and S. F. Etris, American Society for Testing and Materials (ASTM). Springer, US, 1981, p. 8.
      [20]
      M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag., 21(1969), No. 170, p. 399.
      [21]
      M. Kumar, A.J. Schwartz, and W.E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Acta Mater., 50(2002), No. 10, p. 2599.
      [22]
      I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci., 54(2009), No. 4, p. 427.
      [23]
      S. Swaminathan, M.R. Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar, W. Dale Compton, and K.P. Trumble, Large strain deformation and ultra-fine grained materials by machining, Mater. Sci. Eng. A, 410-411(2005), p. 358.
      [24]
      S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy, Mater. Sci. Eng. A, 293(2000), No. 1-2, p. 198.
      [25]
      A.D. Prete, L. Filice, and D. Umbrello, Numerical simulation of machining nickel-based alloys, Procedia CIRP, 8(2013), p. 540.
      [26]
      N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 50(2002), No. 18, p. 4603.
      [27]
      K. Shizawa, K. Kikuchi, and H.M. Zbib, A strain-gradient thermodynamic theory of plasticity based on dislocation density and incompatibility tensors, Mater. Sci. Eng. A, 309-310(2001), p. 416.
      [28]
      H. Jarmakani, Y.M. Wang, E. Bringa, and M.A. Meyers, Modeling of the slip-twinning transition in nanocrystalline nickel and nickel-tungsten under shock compression, Shock Compression of Condensed Matter, 24-29(2007), p. 239.
      [29]
      K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu, Plastic strain-induced grain refinement at the nanometer scale in copper, Acta Mater., 54(2006), No. 19, p. 5281.
      [30]
      F. Jafarian, M.I. Ciaran, D. Umbrello, P.J. Arrazola, L. Filice, and H. Amirabadi, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci., 88(2014), p. 110.
      [31]
      D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New insights into the relationship between dynamic softening phenomena and efficiency of hot working domains of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A, 598(2014), p. 368.
      [32]
      Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater., 59(2011), No. 2, p. 812.
      [33]
      G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong, Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, Scripta Metall., 20(1986), No. 1, p. 93.

    Catalog


    • /

      返回文章
      返回