留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 8
Aug.  2018
数据统计

分享

计量
  • 文章访问数:  647
  • HTML全文浏览量:  140
  • PDF下载量:  37
  • 被引次数: 0
Jie Fu, Heng-yan Zhao, Jie-run Wang, Yu Shen, and Ming Liu, Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 950-956. https://doi.org/10.1007/s12613-018-1644-1
Cite this article as:
Jie Fu, Heng-yan Zhao, Jie-run Wang, Yu Shen, and Ming Liu, Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 950-956. https://doi.org/10.1007/s12613-018-1644-1
引用本文 PDF XML SpringerLink
研究论文

Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers

  • 通讯作者:

    Jie Fu    E-mail: dicpfj@126.com

  • Through electrospinning, La2CoMnO6 nanofibers were prepared from a polyvinylpyrrolidone/lanthanum nitrate–cobalt acetate–manganese acetate (PVP/LCM) precursor and were used as electrode materials. The morphologies and structures of the samples were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) specific surface area analysis. The results show that the prepared La2CoMnO6 nanofibers are stable, one-dimensional structures formed from interconnected La2CoMnO6 nanoparticles with a diamond-like crystal structure. The specific surface area of the fibers is 79.407 m2·g-1. Electrochemical performance tests with a three-electrode system reveal the specific capacitance of the La2CoMnO6 nanofibers as 109.7 F·g-1 at a current density of 0.5 A·g-1. After 1000 charge-discharge cycles at a current density of 1 A·g-1, the specific capacitance maintains 90.9% of its initial value, demonstrating a promising performance of the constraint capacitance and good cyclic stability.
  • Research Article

    Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers

    + Author Affiliations
    • Through electrospinning, La2CoMnO6 nanofibers were prepared from a polyvinylpyrrolidone/lanthanum nitrate–cobalt acetate–manganese acetate (PVP/LCM) precursor and were used as electrode materials. The morphologies and structures of the samples were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) specific surface area analysis. The results show that the prepared La2CoMnO6 nanofibers are stable, one-dimensional structures formed from interconnected La2CoMnO6 nanoparticles with a diamond-like crystal structure. The specific surface area of the fibers is 79.407 m2·g-1. Electrochemical performance tests with a three-electrode system reveal the specific capacitance of the La2CoMnO6 nanofibers as 109.7 F·g-1 at a current density of 0.5 A·g-1. After 1000 charge-discharge cycles at a current density of 1 A·g-1, the specific capacitance maintains 90.9% of its initial value, demonstrating a promising performance of the constraint capacitance and good cyclic stability.
    • loading
    • [1]
      G.F. Ma, E.K. Feng, K.J. Sun, H. Peng, J.J. Li, and Z.Q. Lei, A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor, Electrochim. Acta, 135(2014), p. 461.
      [2]
      S. Faraji and F.N. Ani, The development supercapacitor from activated carbon by electroless plating-A review, Renew. Sust. Energy Rev., 42(2014), p. 823.
      [3]
      A.C. Forse, J.M. Griffin, C. Merlet, J. Carretero-Gonzalez, A.R.O. Raji, N.M. Trease, and C.P. Grey, Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy, Nat. Energy, 2(2017), p. 16216.
      [4]
      G. Wang, Study on the Preparation and Properties of Electrode Materials for Supercapacitors [Dissertation], Tsinghua University, Beijing, 2011, p. 5.
      [5]
      S.G. Mohamed, C.J. Chen, C.K. Chen, S.F. Hu, and R.S. Liu, High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes, ACS Appl. Mater. Interfaces, 6(2014), No. 24, p. 22701.
      [6]
      S.G. Mohamed, T.F. Hung, C.J. Chen, C.K. Chen, S.F. Hu, and R.S. Liu, Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures, RSC Adv., 4(2014), No. 33, p. 17230.
      [7]
      J.S. Xu, Y.D. Sun, M.J. Lu, L. Wang, J. Zhang, J.H. Qian, and X.Y. Liu, Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors, Chem. Eng. J., 334(2018), p. 1466.
      [8]
      M.Z. Hu, D.X. Zhou, D.L. Zhang, W.Z. Lu, B.Y. Li, J. Huang, and S.P. Gong, Microwave dielectric properties of (PbCa)(FeNbZr)O3 ceramics, Mater. Sci. Eng. B, 99(2003), No. 1-3, p. 403.
      [9]
      J. Gao and F.X. Hu, The abnormal electroresistance behavior observed in epitaxial La0.8Ca0.2MnO3 thin films, Thin Solid Films, 515(2006), No. 2, p. 555.
      [10]
      K. Yoshimatsu, K. Nogami, K. Watarai, K. Horiba, H. Kumigashira, O. Sakata, T. Oshima, and A. Ohtomo, Synthesis and magnetic properties of double-perovskite oxide La2MnFeO6 thin films, Phys. Rev. B, 91(2015), No. 5, art. No. 054421.
      [11]
      S. Hamakawa, L. Li, A.W. Li, and E. Iglesia, Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3–δ thin films, Solid State Ionics, 148(2002), No. 1-2, p. 71.
      [12]
      D.N. Rajendran, K.R. Nair, P.P. Rao, K.S. Sibi, P. Koshy, and V.K. Vaidyan, New perovskite type oxides: NaATiMO6(A = Ca or Sr; M = Nb or Ta) and their electrical properties, Mater. Lett., 62(2008), No. 4-5, p. 623.
      [13]
      R.I. Dass and J.B. Goodenough, Multiple magnetic phases of La2CoMnO6–δ(0≤δ≤0.05), Phys. Rev. B, 67(2003), No. 1, art. No. 014401.
      [14]
      S. Zhao, C.F. Lan, J. Ma, S.S. Pandey, S.Z. Hayase, and T.L. Ma, First principles study on the electronic and optical properties of B-site ordered double perovskite Sr2MMoO6(M = Mg, Ca, and Zn), Solid State Commun., 213-214(2015), p. 19.
      [15]
      N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6, Adv. Mater., 17(2005), No. 18, p. 2225.
      [16]
      Y. Liu, Z.B. Wang, J.P.M. Veder, Z.Y. Xu, Y.J. Zhong, W. Zhou, M.O. Tade, S.B. Wang, and Z.P. Shao, Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation, Adv. Energy Mater., 8(2018), art. No. 1702604.
      [17]
      J. Xiang, Y.Q. Chu, G.Z. Zhou, and Y.T. Guo, Electrospinning-based preparation of LaMO3(M = Co, Fe, Mn) nanofibers and its characterization, J. Jiangsu Univ. Sci. Technol. Nat. Sci. Ed., 25(2011), No. 1, p. 31.
      [18]
      Y. Cao, B.P. Lin, Y. Sun, H. Yang, and X.Q. Zhang, Structure, morphology and electrochemical properties of LaxSr1–xCo0.1Mn0.9O3–δ perovskite nanofibers prepared by electrospinning method, J. Alloys Compd., 624(2015), p. 31.
      [19]
      Y.B. Wu, J. Bi, and B.B. Wei, Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nanofibers, Acta Phys.-Chim. Sin., 31(2015), No. 2, p. 315.

    Catalog


    • /

      返回文章
      返回