留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 9
Sep.  2018
数据统计

分享

计量
  • 文章访问数:  481
  • HTML全文浏览量:  77
  • PDF下载量:  25
  • 被引次数: 0
Na-na Qiu, Yin Zhang, Cheng Zhang, Huan Tong, and Xi-ping Song, Tensile properties of tungsten-rhenium wires with nanofibrous structure, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1055-1059. https://doi.org/10.1007/s12613-018-1656-x
Cite this article as:
Na-na Qiu, Yin Zhang, Cheng Zhang, Huan Tong, and Xi-ping Song, Tensile properties of tungsten-rhenium wires with nanofibrous structure, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1055-1059. https://doi.org/10.1007/s12613-018-1656-x
引用本文 PDF XML SpringerLink
研究论文

Tensile properties of tungsten-rhenium wires with nanofibrous structure

  • 通讯作者:

    Xi-ping Song    E-mail: xpsong@skl.ustb.edu.cn

  • In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature (RT) and 800℃. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse (grains diameter of 240 nm) and fine (grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800℃, the tensile strength decreased slightly but still held high values (1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.
  • Research Article

    Tensile properties of tungsten-rhenium wires with nanofibrous structure

    + Author Affiliations
    • In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature (RT) and 800℃. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse (grains diameter of 240 nm) and fine (grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800℃, the tensile strength decreased slightly but still held high values (1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.
    • loading
    • [1]
      E. Antolini and E.R. Gonzalez, Tungsten-based materials for fuel cell applications, Appl. Catal., B, 96(2010), No. 3-4, p. 245.
      [2]
      H. Kurishita, Y. Amano, S. Kobayashi, K. Nakai, H. Arakawa, Y. Hiraoka, T. Takida, K. Takebe, and H. Matsui, Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications, J. Nucl. Mater., 367(2007), p. 1453.
      [3]
      J.W. Coenen, S. Antusch, M. Aumann, W. Biel, J. Du, J. Engels, S. Heuer, A. Houben, T. Hoeschen, B. Jasper, F. Koch, J. Linke, A. Litnovsky, Y. Mao, R. Neu, G. Pintsuk, J. Riesch, M. Rasinski, J. Reiser, M. Rieth, A. Terra, B. Unterberg, T. Weber, T. Wegener, J.H. You, and C. Linsmeier, Materials for DEMO and reactor applications-boundary conditions and new concepts, Phys. Scr., 2016(2015), No. T167, p. 014002.
      [4]
      J.J. Wang, X.L. Chao, G.Z. Li, L.J. Fang, K. Zhao, and T.T. Ning, Dielectric properties of tungsten copper barium ceramic as promising colossal-permittivity Material, J. Electron. Mater., 46(2017), No. 8, p. 4697.
      [5]
      D. Rupp, R. Mönig, P. Gruber, and S.M. Weygand, Fracture toughness and microstructural characterization of polycrystalline rolled tungsten, Int. J. Refract. Met. Hard Mater., 28(2010), No. 6, p. 669.
      [6]
      S. Wurster, B. Gludovatz, A. Hoffmann, and R. Pippan, Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites, J. Nucl. Mater., 413(2011), No. 3, p. 166.
      [7]
      M. Xia, Q.Z. Yan, L. Xu, H.Y. Guo, L.X. Zhu, and C.C. Ge, Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles, J. Nucl. Mater., 434(2013), No. 1-3, p. 85.
      [8]
      K. Skotnicova, V.M. Kirillova, V.A. Ermishkin, T. Cegan, J. Jurica, M. Kraus, and G.S. Burkhanov, Influence of alloying and testing conditions on mechanical properties and deformation behavior of <100> tungsten-based single crystals, Mater. Sci. Eng. A., 636(2015), p. 536.
      [9]
      Y. Mutoh, K. Ichikawa, K. Nagata, and M. Takeuchi, Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures, J. Mater. Sci., 30(1995), No. 3, p. 770.
      [10]
      S. Wurster, B. Gludovatz, and R. Pippan, High temperature fracture experiments on tungsten-rhenium alloys, Int. J. Refract. Met. Hard Mater., 28(2010), No. 6, p. 692.
      [11]
      M. Fukuda, S. Nogami, K. Yabuuchi, A. Hasegawa, and T. Muroga, Anisotropy in the mechanical properties of potassium and rhenium doped tungsten alloy plates for fusion reactor applications, Fusion Sci. Technol., 68(2015), No.3, p. 690.
      [12]
      B.Y. Zhang, X.H. Chen, S.S. Wang, D.Y. Lin, and X.D. Hui, High strength tungsten wire reinforced Zr-based bulk metallic glass matrix composites prepared by continuous infiltration process, Mater. Lett., 93(2013), p. 210.
      [13]
      J. Riesch, Y. Han, J. Almanstötter, J.W. Coenen, T. Höschen, B. Jasper, P. Zhao, C. Linsmeier, and R. Neu, Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO-potassium doped tungsten wire, Phys. Scr., 2016(2016), No. T167, p. 014006.
      [14]
      J. Du, T. Höschen, M. Rasinski, S. Wurster, W. Grosinger, and J.H. You, Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings, Compos. Sci. Technol., 70(2010), No. 10, p. 1482.
      [15]
      P. Zhao, J. Riesch, T. Höschen, J. Almanstötter, M. Balden, J.W. Coenen, R. Himml, W. Pantleon, U. von Toussaint, and R. Neu, Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments, Int. J. Refract. Met. Hard Mater., 68(2017), p. 29.
      [16]
      P. Schade, 100 years of doped tungsten wire, Int. J. Refract. Met. Hard Mater., 28(2010), No. 6, p. 648.
      [17]
      W.F. Hosford Jr, Microstructural changes during deformation of (011) fiber-textured metals, Trans. Metall. Soc. AIME, 230(1964), No.1, p. 12.

    Catalog


    • /

      返回文章
      返回