留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 9
Sep.  2018
数据统计

分享

计量
  • 文章访问数:  493
  • HTML全文浏览量:  78
  • PDF下载量:  11
  • 被引次数: 0
Dong-tao Wang, Hai-tao Zhang, Lei Li, Hai-lin Wu, Ke Qin, and Jian-zhong Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1080-1089. https://doi.org/10.1007/s12613-018-1659-7
Cite this article as:
Dong-tao Wang, Hai-tao Zhang, Lei Li, Hai-lin Wu, Ke Qin, and Jian-zhong Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1080-1089. https://doi.org/10.1007/s12613-018-1659-7
引用本文 PDF XML SpringerLink
研究论文

The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites

  • 通讯作者:

    Hai-tao Zhang    E-mail: haitao_zhang@epm.neu.edu.cn

  • The effect of high-speed direct-chill (DC) casting on the microstructure and mechanical properties of Al-Mg2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al-Mg2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg2Si particles (from 28 to 12 μm), the spacing of eutectic Mg2Si (from 3 to 0.5 μm), and the grains of AA6061 alloy (from 102 to 22 μm). The morphology of the eutectic Mg2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg2Si phase and the grains in the Al-Mg2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al-Mg2Si composites and AA6061 alloy billets.
  • Research Article

    The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites

    + Author Affiliations
    • The effect of high-speed direct-chill (DC) casting on the microstructure and mechanical properties of Al-Mg2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al-Mg2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg2Si particles (from 28 to 12 μm), the spacing of eutectic Mg2Si (from 3 to 0.5 μm), and the grains of AA6061 alloy (from 102 to 22 μm). The morphology of the eutectic Mg2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg2Si phase and the grains in the Al-Mg2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al-Mg2Si composites and AA6061 alloy billets.
    • loading
    • [1]
      J. Zhang, Z. Fan, Y. Wang, and B. Zhou, Microstructural refinement in Al-Mg2Si in situ composites, J. Mater. Sci. Lett., 18(1999), No. 10, p. 783.
      [2]
      C. Li, Y.Y. Wu, H. Li, and X.F. Liu, Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys, Acta Mater., 59(2011), No. 3, p. 1058.
      [3]
      B.H. Yu, D. Chen, Q.B. Tang, C.L. Wang, and D.H. Shi, Structural, electronic, elastic and thermal properties of Mg2Si, J. Phys. Chem. Solids, 71(2010), No. 5, p. 758.
      [4]
      N.A. Nordin, S. Farahany, A. Ourdjini, T.A.A. Bakar, and E. Hamzah, Refinement of Mg2Si reinforcement in a commercial Al-20%Mg2Si in-situ composite with bismuth, antimony and strontium, Mater. Charact., 86(2013), p. 97.
      [5]
      X.F. Wu, G.A. Zhang, and F.F. Wu, Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite, Trans. Nonferrous Met. Soc. China, 23(2013), No. 6, p. 1532.
      [6]
      N.A. Nordin, S. Farahany, A. Ourdjini, T. Abubakar, and E. Hamzah, Evaluation of the effect of bismuth on Mg2Si particulate reinforced in Al-20%Mg2Si in situ composite, Adv. Mater. Res., 845(2014), p. 22.
      [7]
      M. Emamy, R. Khorshidi, and A.H. Raouf, The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4337.
      [8]
      J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Microstructural development of Al-15wt.% Mg2Si in situ composite with mischmetal addition, Mater. Sci. Eng. A, 281(2000), No. 1-2, p. 104.
      [9]
      N.A. Nordin, S. Farahany, T.A.A. Bakar, E. Hamzah, and A. Ourdjini, Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al-20%Mg2Si-xCe in situ composite solidified at a slow cooling rate, J. Alloys Compd., 650(2015), p. 821.
      [10]
      N.A. Nordin, S. Farahany, T. Abubakar, and E. Hamzah, Alteration by cerium element on primary and eutectic Mg2Si phases in Al-20%Mg2Si in situ composite, Adv. Mater. Res., 1125(2015), p. 23.
      [11]
      A. Razaghian, A. Bahrami, and M. Emamy, The influence of Li on the tensile properties of extruded in situ Al-15%Mg2Si composite, Mater. Sci. Eng. A, 532(2012), p. 346.
      [12]
      N.A. Nordin, S. Farahany, A. Ourdjini, T.A.A. Bakar, and E. Hamzah, Refinement of Mg2Si particulate reinforced Al-20%Mg2Si in-situ composite with addition of antimony, Appl. Mech. Mater., 663(2013), p. 271.
      [13]
      C. Li, X.F. Liu, and Y.Y. Wu, Refinement and modification performance of Al-P master alloy on primary Mg2Si in Al-Mg-Si alloys, J. Alloys Compd., 465(2008), No. 1-2, p. 145.
      [14]
      Y.Y. Ren and Y.M. Li, Effect of phosphorus on microstructure and properties of Al-Mg2Si alloys subjected to electromagnetic stirring, Adv. Mater. Res., 291-294(2011), p. 652.
      [15]
      Q.D. Qin, Y.G. Zhao, W. Zhou, and P.J. Cong, Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Mater. Sci. Eng. A, 447(2007), No. 1-2, p. 186.
      [16]
      M. Tebib, A.M. Samuel, F. Ajersch, and X.G. Chen, Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy, Mater. Charact., 89(2014), p. 112.
      [17]
      Z.D. Li, C. Li, Z.M. Gao, Y.C. Liu, X.F. Liu, Q.Y. Guo, L.M. Yu, and H.J. Li, Corrosion behavior of Al-Mg2Si alloys with/without addition of Al-P master alloy, Mater. Charact., 110(2015), p. 170.
      [18]
      R. Zamani, H. Mirzadeh, and M. Emamy, Mechanical properties of a hot deformed Al-Mg2Si in-situ composite, Mater.Sci. Eng. A, 726(2018), p. 10-17.
      [19]
      J.T. Zhang, Y.G. Zhao, X.F. Xu, and X.B. Liu, Effect of ultrasonic on morphology of primary Mg2Si in in-situ Mg2Si/Al composite, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 2852.
      [20]
      V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, and S.K. Mishra, Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet, Mater. Sci. Eng. A,679(2017), p. 56.
      [21]
      R. Braun, Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet, Mater. Corros., 56(2005), No. 3, p. 159.
      [22]
      Y.S. Chen, T.J. Chen, S.Q. Zhang, and P.B. Li, Effects of processing parameters on microstructure and mechanical properties of powder-thixoforged 6061 aluminum alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 3, p. 699.
      [23]
      Q.F. Zhu, Z.H. Zhao, J.Z.Cui, X.J. Wang, and K. Qin, Effect of casting speed on surface quality of horizontal direct chill casting 7075 aluminum alloy ingot, Acta Metall. Sinica. (English Lett.), 24(2011), No. 5, p. 399.
      [24]
      Q.F. Zhu, Z.H. Zhao, X.J. Wang, and J.Z. Cui, The effect of casting speed on sump shape and ingot surface of HDC casting 7075 aluminum alloy ingot, Adv. Mater. Res., 189(2011), p. 3785.
      [25]
      L. Zhang, D.G. Eskin, A. Miroux, T. Subroto, and L. Katgerman, Influence of melt feeding scheme and casting parameters during direct-chill casting on microstructure of an AA7050 billet, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1565.
      [26]
      D.G. Eskin, V.I. Savran, and L. Katgerman, Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu Alloy, Metall. Mater. Trans. A, 36(2005), No. 7, p. 1965.
      [27]
      V.I. Savran, L. Katgerman, and D.G. Eskin, Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys, Metall. Mater. Trans. A, 35(2004), No. 11, p. 3551.
      [28]
      J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys, J. Mater. Sci. Lett., 19(2000), No. 20, p. 1825.
      [29]
      O. Yanagisawa and T. Yano, Influence of inter-fiber spacing on the yield stress of Al-Al3Ni eutectic composites, Trans. Jpn. Inst. Met., 29(1988), No. 7, p. 580.
      [30]
      E.L. Huskins, B. Cao, and K.T. Ramesh, Strengthening mechanisms in an Al-Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 6, p. 1292.

    Catalog


    • /

      返回文章
      返回