留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 10
Oct.  2018
数据统计

分享

计量
  • 文章访问数:  401
  • HTML全文浏览量:  47
  • PDF下载量:  10
  • 被引次数: 0
Xiong Chen, Guo-hua Gu, Li-juan Li,  and Ren-feng Zhu, The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1123-1131. https://doi.org/10.1007/s12613-018-1663-y
Cite this article as:
Xiong Chen, Guo-hua Gu, Li-juan Li,  and Ren-feng Zhu, The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1123-1131. https://doi.org/10.1007/s12613-018-1663-y
引用本文 PDF XML SpringerLink
研究论文

The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector

  • 通讯作者:

    Guo-hua Gu    E-mail: guguohua@126.com

  • The flotation separation of chalcopyrite from monoclinic pyrrhotite using food-grade guar gum (FGG) as a depressant was studied through flotation tests, kinetic studies, dynamic potential measurements, adsorption experiments, and infrared spectral analyses. The microflotation results showed that the flotation separation of chalcopyrite from monoclinic pyrrhotite could not be realized by adding mixed aerofloat (CSU11) alone. The depressant FGG exhibited a selective depression effect on monoclinic pyrrhotite by controlling the pulp pH range from 5.0 to 6.0, with a maximum floatability variation of 79.36% in the presence of CSU11. The flotation kinetics, zeta-potential, adsorption, and infrared spectroscopy studies revealed that the FGG could absorb more strongly on the surface of monoclinic pyrrhotite than on the surface of chalcopyrite. In addition, the results revealed that the interaction of FGG with the monoclinic pyrrhotite surface was governed primarily by strong chemisorption, whereas FGG mainly bonded to chalcopyrite through hydrogen bonding. This difference was responsible for the excellent depression selectivity of FGG toward monoclinic pyrrhotite flotation and weak depression effect toward chalcopyrite flotation.
  • Research Article

    The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector

    + Author Affiliations
    • The flotation separation of chalcopyrite from monoclinic pyrrhotite using food-grade guar gum (FGG) as a depressant was studied through flotation tests, kinetic studies, dynamic potential measurements, adsorption experiments, and infrared spectral analyses. The microflotation results showed that the flotation separation of chalcopyrite from monoclinic pyrrhotite could not be realized by adding mixed aerofloat (CSU11) alone. The depressant FGG exhibited a selective depression effect on monoclinic pyrrhotite by controlling the pulp pH range from 5.0 to 6.0, with a maximum floatability variation of 79.36% in the presence of CSU11. The flotation kinetics, zeta-potential, adsorption, and infrared spectroscopy studies revealed that the FGG could absorb more strongly on the surface of monoclinic pyrrhotite than on the surface of chalcopyrite. In addition, the results revealed that the interaction of FGG with the monoclinic pyrrhotite surface was governed primarily by strong chemisorption, whereas FGG mainly bonded to chalcopyrite through hydrogen bonding. This difference was responsible for the excellent depression selectivity of FGG toward monoclinic pyrrhotite flotation and weak depression effect toward chalcopyrite flotation.
    • loading
    • [1]
      G.Z. Qiu, Y.H. Hu, Q.M. Feng, and T. Jiang, The mineral processing of 21 century, Sci.Chinese, 5(1997), p. 23.
      [2]
      K.E. Waters, N.A. Rowson, R.W. Greenwood, and A.J. Williams, The effect of heat treatment on the magnetic properties of pyrite, Miner. Eng., 21(2008), No. 9, p. 679.
      [3]
      C.V. Díaz-López, E.T. Pecina-Treviño, and E. Orrantia-Borunda, A study of bioflotation of chalcopyrite and pyrrhotite mixtures in presence of ferrooxidans, Can. Metall. Q., 51(2001), No. 2, p. 118.
      [4]
      S.A. Allison and C.T. O'Connor, An investigation into the flotation behaviour of pyrrhotite, Int. J. Miner. Process., 98(2011), No. 3-4, p. 202.
      [5]
      C. Tukel and S. Kelebek, Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression, Int. J. Miner. Process., 95(2010), No. 1-4, p. 47.
      [6]
      A.P. Chandra and A.R. Gerson, A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite, Adv. Colloid Interface Sci., 145(2009), No. 1-2, p. 97.
      [7]
      X.Y. Qiu, X.F. Ma, X.J. He, and C.S. Luo, Research progress in flotation separation of pyrrhotite from chalcopyrite, Min. Eng., 12(2011). No. 6, p. 29.
      [8]
      Q. Zhang, Y.H. Hu, G.H. Gu, and J. Xu, Selective flotation separation of jamesonite from pyrrhotite by lime, Min. Metall. Eng., 24(2004), No. 2, p. 30.
      [9]
      A. Gül, A.E. Yüce, A.A. Sirkeci, and M. Özer, Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores, Can. Metall. Q., 47(2008), No. 2, p. 111.
      [10]
      Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant, Miner. Eng., 74(2015), p. 86.
      [11]
      R.H. Yoon, C.I. Basilio, M.A. Marticorena, A.N. Kerr, and R. Stratton-Crawley, A study of the pyrrhotite depression mechanism by diethylenetriamine, Miner. Eng., 8(1995), No. 7, p. 807.
      [12]
      E. Bogusz, S.R. Brienne, I. Butler, S.R. Rao, and J.A. Finch, Metal ions and dextrin adsorption on pyrite, Miner. Eng., 10(1997), No. 4, p. 441.
      [13]
      N.J. Bolin and J.S. Laskowski, Polysaccharides in flotation of sulfides (Part Ⅱ):Copper/lead separation with dextrin and sodium hydroxide, Int. J. Miner. Process., 33(1991), No. 1-4, p. 235.
      [14]
      J. Xu, W. Sun, Q. Zhang, and Y.H. Hu, Research on depression mechanism of pyrite and pyrrhotite by new organic depressant RC, Min. Metall. Eng., 23(2003), No. 6, p. 27.
      [15]
      W. Sun, R.Q. Liu, X.F. Cao, and Y.H. Hu, Flotation separation of marmatite from pyrrhotite using DMPS as depressant, Trans. Nonferrous Met. Soc. China, 16(2006), p. 671.
      [16]
      S. Kelebek and C. Tukel, The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation, Int. J. Miner. Process., 57(1999), No. 2, p. 135.
      [17]
      D. Kim, Studies of the pyrrhotite depression mechanism with diethylenetriamine, Bull. Korean Chem. Soc., 19(1998), No. 8, p. 840.
      [18]
      M.F. Cai, Z. Dang, Y.W. Chen, and N. Belzile, The passivation of pyrrhotite by surface coating, Chemosphere, 61(2005), No. 5, p. 659.
      [19]
      Y.W. Chen, Y.R. Li, M.F. Cai, N. Belzile, and Z. Dang, Preventing oxidation of iron sulfide minerals by polyethylene polyamines, Miner. Eng., 19(2006), No. 1, p. 19.
      [20]
      Q. Liu, D. Wannas, and Y.J. Peng, Exploiting the dual functions of polymer depressants in fine particle flotation, Int. J. Miner. Process., 80(2006), No. 2-4, p. 244.
      [21]
      M. J. Pearse, An overview of the use of chemical reagents in mineral processing, Miner. Eng., 18(2005), No. 2, p. 139.
      [22]
      J.H. Chen, Y.Q. Li, and Y. Chen, Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium, Miner. Eng., 24(2011), No. 1, p. 58.
      [23]
      C. Tukel and S. Kelebek, Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression, Int. J. Miner. Process., 95(2010), No. 1-4, p. 47.
      [24]
      R.R. Castro, C.M.M. Silva, R.M. Nunes, P.L.R. Cunha, R.C.M. de Paula, J.P.A. Feitosa, V.C.C. Girão, M.M.L. Pompeu, J.A.D. Leite, and F.A.C. Rocha, Structural characteristics are crucial to the benefits of guar gum in experimental osteoarthritis, Carbohydr. Polym., 150(2016), p. 392.
      [25]
      F.S. Chen, H.F. Xu, S.L. Wang, and L. Zheng, A study on preparation of low viscosity guar gum and its strengthening performance, China Pulp Paper Ind., 33(2012), No. 2, p.13.
      [26]
      E. Frollini, W.F. Reed, M. Milas, and M. Rinaudo, Polyelectrolytes from polysaccharides:Selective oxidation of guar gum-a revisited reaction, Carbohydr. Polym., 27(1995), No. 2, p. 129.
      [27]
      H.H. Gong, M.Z. Liu, B. Zhang, D.P. Cui, C.M. Gao, B. Ni, and J.C. Chen, Synthesis of oxidized guar gumby drymethod and its application in reactive dye printing, Int. J. Biol. Macromol., 49(2011), No. 5, p. 1083.
      [28]
      P.G. Shortridge, P.J. Harris, D.J. Bradshaw, and L.K. Koopal, The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc, Int. J. Miner. Process., 59(2000), No. 3, p. 215.
      [29]
      K.L. Zhao, W. Yan, X.H. Wang, B. Hui, G.H. Gu, and H. Wang, The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant, Int. J. Miner. Process., (2017), No. 161, p. 78.
      [30]
      E.T. Pecina, M. Rodríguez, P. Castillo, V. Diaz, and E. Orrantia, Effect of leptospirillum ferrooxidans on the flotation kinetics of sulphide ores, Miner. Eng., 22(2009), No. 5, p. 462.
      [31]
      S. Kelebek and B. Nanthakumar, Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation, Int. J. Miner. Process., 84(2007), No. 1-4, p. 69.
      [32]
      J.D. Miller, J. Li, J.C. Davidtz, and F. Vos, A review of pyrrhotite flotation chemistry in the processing of PGM ores, Miner. Eng., 18(2005), No. 8, p. 855.
      [33]
      G. Fairthorne, J.S. Brinen, D. Fornasiero, D.R. Nagaraj, and J. Ralston, Spectroscopic and electrokinetic study of the adsorption of butyl ethoxycarbonyl thiourea on chalcopyrite, Int. J. Miner. Process., 54(1998), No. 3-4, p. 147.
      [34]
      W. Lin, J. Tian, J. Ren, P. Xu, Y. Dai, and S. Sun, Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution, Environ. Sci. Pollut. Res., 23(2015), No.1, p. 785.
      [35]
      A.N. Buckley, G.A. Hope, G.K. Parker, J. Steyn, and R. Woods, Mechanism of mixed dithiophosphate and mercaptobenzothiazole collectors for Cu sulfide ore minerals, Miner. Eng., 109(2017), p. 80.
      [36]
      T. Zhang and W.Q. Qin, Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate, J. Cent. South Univ., 22(2015), No. 4, p. 1232.
      [37]
      R.K. Rath, S. Subramanian, and T. Pradeep, Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants, J. Colloid Interface Sci., 229(2000), No. 1, p. 82.
      [38]
      M. Messali, H. Lgaz, R. Dassanayake, R. Salghi, S. Jodeh, N. Abidi, and O. Hamed, Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium:electrochemical, surface, DFT and MD simulations studies, J. Mol. Struct., 1145(2017), p. 43.
      [39]
      R.K. Rath, S. Subramanian, V. Sivanandam, and T. Pradeep, Studies on the interaction of guar gum with chalcopyrite, Can. Metall. Q., 40(1999), No. 1, p. 1.

    Catalog


    • /

      返回文章
      返回