Cite this article as: |
Ying Liu, Yong-an Zhang, Wei Wang, Dong-sheng Li, and Jun-yi Ma, Microstructure and electrolysis behavior of self-healing Cu-Ni-Fe composite inert anodes for aluminum electrowinning, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1208-1216. https://doi.org/10.1007/s12613-018-1673-9 |
Yong-an Zhang E-mail: zhangyongan@grinm.com
[1] |
D.R. Sadoway, Inert anodes for the hall-héroult cell:The ultimate materials challenge, JOM, 53(2001), No. 5, p. 34.
|
[2] |
J. Keniry, The economics of inert anodes and wettable cathodes for aluminum reduction cells, JOM, 53(2001), No. 5, p. 43.
|
[3] |
B.J. Welch, Inert anodes-the status of the material science, the opportunities they present and the challenges that need resolving before commercial implementation, Light Met., 2009, p. 971.
|
[4] |
T.R. Beck and R.J. Brooks, Non-consumable Anode and Lining for Aluminum Electrolytic Reduction Cell, U.S. Patent, No. 5284562, 1994.
|
[5] |
T.R. Beck, A non-consumable metal anode for production of aluminum with low-temperature fluoride melts,[In] A. Tomsett and J. Johnson eds. Essential Readings in Light Metals, Springer, Cham, 2016, p.1104.
|
[6] |
B. Assouli, M. Pedron, S. Helle, A. Carrere, D. Guay, and L. Roué, Mechanically alloyed Cu-Ni-Fe based materials as inert anode for aluminum production, Light Met., 2009, p. 1141.
|
[7] |
I. Gallino, M.E. Kassner, and R. Busch, Oxidation and corrosion of highly alloyed Cu-Fe-Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions, Corros. Sci., 63(2012), p. 293.
|
[8] |
S. Helle, M. Pedron, B. Assouli, B. Davis, D. Guay, and L. Roué, Structure and high-temperature oxidation behaviour of Cu-Ni-Fe alloys prepared by high-energy ball milling for application as inert anodes in aluminium electrolysis, Corros. Sci., 52(2010), No. 10, p. 3348.
|
[9] |
G. Goupil, G. Bonnefont, H. Idrissi, D. Guay, and L. Roué, Consolidation of mechanically alloyed Cu-Ni-Fe material by spark plasma sintering and evaluation as inert anode for aluminum electrolysis, J. Alloys Compd., 580(2013), p. 256.
|
[10] |
T.R. Beck, C.M. Macrae, and N.C. Wilson, Metal anode performance in low temperature electrolytes for aluminum production, Metall. Mater. Trans. B, 42(2011), No. 4, p. 807.
|
[11] |
S. Helle, B.Brodu, B. Davis, D. Guay, and L. Roué, Influence of the iron content in Cu-Ni based inert anodes on their corrosion resistance for aluminium electrolysis, Corros. Sci., 53(2011), No. 10, p. 3248.
|
[12] |
R.P. Pawlek, Inert anodes:an update,[In] A. Tomsett and J. Johnson eds. Essential Readings in Light Metals, Springer, Cham, 2016, p. 1126.
|
[13] |
J.Y. Liu, Z.Y. Li, Y.Q. Tao, D. Zhang, and K.C. Zhou, Phase evolution of 17(Cu-10Ni)-(NiFe2O4-10NiO) cermet inert anode during aluminum electrolysis, Trans. Nonferrous Met. Soc. China, 21(2011), No. 3, p. 566.
|
[14] |
Y.Q. Tao, Z.Y. Li, D. Zhang, H.W. Xiong, and K.C. Zhou, Microstructure evolution of a nickel ferrite-copper alloy cermet during sintering and high-temperature oxidation, J. Am. Ceram. Soc., 95(2012), No. 10, p. 3031.
|
[15] |
E. Olsen and J. Thonstad, Nickel ferrite as inert anodes in aluminium electrolysis:Part I Material fabrication and preliminary testing, J. Appl. Electrochem., 29(1999), No. 3, p. 293.
|
[16] |
ASM International, ASM Metals Hand Book, Volume 3:Alloy Phase Diagrams, p. 1644.
|
[17] |
S. Corso, P. Tailhades, I. Pasquet, A. Rousset, V. Laurent, A. Gabriel, and C. Condolf, Preparation conditions of pure and stoichiometric NixFe3-xO4 bulk ceramics, Solid State Sci., 6(2004), No. 8, p. 791.
|
[18] |
O.A. Lorentsen, Behaviour of Nickel, Iron and Copper by Application of Inert Anode in Aluminium Production[Dissertation], Norwegian University of Science and Technology, Trondheim, 2000, p. 265.
|
[19] |
V. Deněk, Ø.T. Gaustavsen, and T. Ostvold, Structure of the MF-AlF3-Al2O3 (M=La, Na, K) melts, Can. Metall. Q., 39(2000), No. 2, p. 153.
|
[20] |
V. Lacassagne, C. Bessada, P. Florian, S. Bouvet, B. Ollivier, J.P. Coutures, and D. Massiot, Structure of high temperature NaF-AlF3-Al2O3 melts:a multinuclear NMR study, J. Phys. Chem. B, 106(2002), No. 8, p. 1862.
|
[21] |
G. Goupil, S. Helle, B. Davis, D. Guay, and L. Roué, Anodic behavior of mechanically alloyed Cu-Ni-Fe and Cu-Ni-Fe-O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte, Electrochim. Acta, 112(2013), p. 176.
|
[22] |
S. Helle, M. Tresse, B. Davis, D. Guay, and L. Roué, Mechanically alloyed Cu-Ni-Fe-O based materials as oxygen-evolving anodes for aluminum electrolysis, J. Electrochem. Soc., 159(2012), No. 4, p. E62.
|
[23] |
A.P. Khramov, V.A. Kovrov, Y.P. Zaikov, and V.M. Chumarev, Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis, Corros. Sci., 70(2013), p. 194.
|
[24] |
A.P. Apisarov, A.E. Dedyukhin, A.A. Red'kin, O.Y. Tkacheva, and Y.P. Zaikov, Physicochemical properties of KF-NaF-AlF3 molten electrolytes, Russ. J. Electrochem., 46(2010), No. 6, p. 633.
|
[25] |
X.Y. Yan, M.I. Pownceby, and G. Brooks, Corrosion behavior of nickel ferrite-based ceramics for aluminum electrolysis cells, Light Met., 2007, p. 909.
|
[26] |
L. Ma, K.C. Zhou, Z.Y. Li, Q.P. Wei, and L. Zhang, Hot corrosion of a novel NiO/NiFe2O4 composite coating thermally converted from the electroplated Ni-Fe alloy, Corros. Sci., 53(2011), No. 11, p. 3712.
|
[27] |
H.B. He, Y. Wang, J.J. Long, and Z.H. Chen, Corrosion of NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3816.
|