留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 11
Nov.  2018
数据统计

分享

计量
  • 文章访问数:  471
  • HTML全文浏览量:  64
  • PDF下载量:  15
  • 被引次数: 0
Qing-dong Qin, Jin-bo Qu, Yong-e Hu, Yu-jiao Wu,  and Xiang-dong Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-018-1681-9
Cite this article as:
Qing-dong Qin, Jin-bo Qu, Yong-e Hu, Yu-jiao Wu,  and Xiang-dong Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-018-1681-9
引用本文 PDF XML SpringerLink
研究论文

Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy

  • 通讯作者:

    Qing-dong Qin    E-mail: qin8370@126.com

  • CoCrCuFeNi-TiO was prepared by arc melting of the pure elements and Ti2CO powder under an Ar atmosphere. Both CoCrCuFeNi and CoCrCuFeNi-TiO alloys are composed of a face-centered cubic (fcc) solid solution, whereas the alloys of CoCrCuFeNi-TiO are basically composed of an fcc solid solution and TiO crystals. The microstructures of CoCrCuFeNi-TiO are identified as dendrite and interdendrite structures such as CoCrCuFeNi. The morphology of TiO is identified as an equiaxed crystal with a small amount of added Ti2CO. By increasing the amount of Ti2CO added, the TiO content was dramatically increased and part of the equiaxed crystals changed to a dendrite structure. A test of the oxidation resistance demonstrates that the oxidation resistance of CoCrCuFeNi-TiO is better than that of CoCrCuFeNi. However, as the TiO content increases further, a corresponding decrease is observed in the oxidation resistance.
  • Research Article

    Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy

    + Author Affiliations
    • CoCrCuFeNi-TiO was prepared by arc melting of the pure elements and Ti2CO powder under an Ar atmosphere. Both CoCrCuFeNi and CoCrCuFeNi-TiO alloys are composed of a face-centered cubic (fcc) solid solution, whereas the alloys of CoCrCuFeNi-TiO are basically composed of an fcc solid solution and TiO crystals. The microstructures of CoCrCuFeNi-TiO are identified as dendrite and interdendrite structures such as CoCrCuFeNi. The morphology of TiO is identified as an equiaxed crystal with a small amount of added Ti2CO. By increasing the amount of Ti2CO added, the TiO content was dramatically increased and part of the equiaxed crystals changed to a dendrite structure. A test of the oxidation resistance demonstrates that the oxidation resistance of CoCrCuFeNi-TiO is better than that of CoCrCuFeNi. However, as the TiO content increases further, a corresponding decrease is observed in the oxidation resistance.
    • loading
    • [1]
      D.C. Ma, M.J. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Mater., 98(2015), p. 288.
      [2]
      H.L, Wang, T.X. Gao, J.Z. Niu, P.J. Shi, J. Xu, and Y. Wang, Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 77.
      [3]
      T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549.
      [4]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.
      [5]
      R.X. Li, P.K. Liaw, and Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides, Mater. Sci. Eng. A, 707(2017), p. 668.
      [6]
      S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and Krishanu Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy:Microstructure and mechanical properties, Mater. Sci. Eng. A, 679(2017), p. 299.
      [7]
      W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2.
      [8]
      R. Raghavan, C. Kirchlechner, B.N. Jaya, M. Feuerbacher, and G. Dehm, Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy, Scripta Mater., 129(2017), p. 52.
      [9]
      M.C. Gao, W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys Fundamentals and Applications, Springer International Publishing, Switzerland, 2016, p. 32.
      [10]
      Z.G. Wu, Y.F. Gao, and H.B. Bei, Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys, Acta Mater., 120(2016), p. 108.
      [11]
      B. Vishwanadh, N. Sarkar, S. Gangil, S. Singh, R. Tewari, G.K. Dey, and S. Banerjee, Synthesis and microstructural characterization of a novel multicomponent equiatomic ZrNbAlTiV high entropy alloy, Scripta Mater., 124(2016), p. 146.
      [12]
      K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, and D. Raabe, Non-equiatomic high entropy alloys:Approach towards rapid alloy screening and property-oriented design, Mater. Sci. Eng. A, 648(2015), p. 183.
      [13]
      J.B. Cheng, X.B. Liang, and B.S. Xu, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol., 240(2014), p. 184.
      [14]
      S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater., 59(2011), No. 1, p. 182.
      [15]
      B.R. Braeckman and D. Depla, Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films, J. Alloy Compd., 646(2015), p. 810.
      [16]
      J.B. Cheng, D. Liu, X.B. Liang, and Y.X. Chen, Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCrCuFeNi high entropy alloy coatings, Surf. Coat. Technol., 281(2015), p. 109.
      [17]
      B.R. Braeckman, F. Misják, G. Radnóczi, and D. Depla, The influence of Ge and in addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films, Thin Solid Films, 616(2016), p. 703.
      [18]
      Y.J. Hsu, W.C. Chiang, and J.K. Wu, Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 92(2005), No. 1, p. 112.
      [19]
      W.L. Wang, L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, and B. Wei, Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy, Intermetallics, 77(2016), p. 41.
      [20]
      Ł. Rogal, Semi-solid processing of the CoCrCuFeNi high entropy alloy, Mater. Des., 119(2017), p. 406.
      [21]
      Q.D. Qin, B.W. Huang, and W. Li, Microstructure and wear resistance of in situ porous TiO/Cu composites, Met. Mater. Int., 22(2016), No. 4, p. 630.
      [22]
      Q.D. Qin, B.W. Huang, W. Li, and F. Shao, Microstructure development of in situ porous TiO/Cu composites, J. Alloys Compd., 672(2016), p. 590.
      [23]
      Q.D. Qin, B.W. Huang, W. Li, and Z.Y. Zeng, Preparation and wear resistance of aluminum composites reinforced with in Situ formed TiO/Al2O3, J. Mater. Eng. Perform., 25(2016), No. 5, p. 2029.
      [24]
      J. Blazevska-Gilev, V. Jandová, J. Kupčik, Z. Bastl, J. Šubrt, P. Bezdička, and J. Pola, Laser hydrothermal reductive ablation of titanium monoxide:hydrated TiO particles with modified Ti/O surface, J. Solid State Chem., 197(2013), p. 337.
      [25]
      A.A. Valeeva, G. Tang, A.I. Gusev, and A.A. Rempel, Observation of structural vacancies in titanium monoxide using transmission electron microscopy, Phys. Solid State, 45(2003), No. 1, p. 87.
      [26]
      Q.D. Qin, Y.G. Zhao, P.J. Cong, Y.H. Liang, and W. Zhou, Functionally graded Mg2Si/Al composite produced by an electric arc remelting process, J. Alloys Compd., 420(2006), No. 1-2, p. 121.
      [27]
      S.Q. Jiao and H.M, Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1-2, p. 243.
      [28]
      X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15(2007), No. 3, p. 357.

    Catalog


    • /

      返回文章
      返回