留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 11
Nov.  2018
数据统计

分享

计量
  • 文章访问数:  582
  • HTML全文浏览量:  109
  • PDF下载量:  8
  • 被引次数: 0
You Zhou, Yu-he Zhang, Jun-sheng Ma, Ming-peng Yu,  and Hong Qiu, Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1329-1334. https://doi.org/10.1007/s12613-018-1686-4
Cite this article as:
You Zhou, Yu-he Zhang, Jun-sheng Ma, Ming-peng Yu,  and Hong Qiu, Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1329-1334. https://doi.org/10.1007/s12613-018-1686-4
引用本文 PDF XML SpringerLink
研究论文

Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

  • 通讯作者:

    Hong Qiu    E-mail: qiuhong@sas.ustb.edu.cn

  • Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8-Ag powder, which was used to synthesize the HCl-doped polyaniline-Ag (HCl-PANI-Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl-PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl-PANI matrix. The HCl-PANI-Ag composite had a conductivity of (6.8 ±0.1) S/cm, which is about four times larger than that of the HCl-PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).
  • Research Article

    Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

    + Author Affiliations
    • Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8-Ag powder, which was used to synthesize the HCl-doped polyaniline-Ag (HCl-PANI-Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl-PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl-PANI matrix. The HCl-PANI-Ag composite had a conductivity of (6.8 ±0.1) S/cm, which is about four times larger than that of the HCl-PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).
    • loading
    • [1]
      P.K. Khanna, N. Singh, S. Charan, and A.K. Viswanath, Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism, Mater. Chem. Phys., 92(2005), No. 1, p. 214.
      [2]
      Y.O. Kang, S.H. Choi, A. Gopalan, K.P. Lee, H.D. Kang, and Y.S. Song, Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation, J. Non-Cryst. Solids, 352(2006), No. 5, p. 463.
      [3]
      M.M. Oliveira, E.G. Castro, C.D. Canestraro, D. Zanchet, D. Ugarte, L.S. Roman, and A.J.G. Zarbin, A simple two-phase route to silver nanoparticles/polyaniline structures, J. Phys. Chem. B, 110(2006), No. 34, p. 17063.
      [4]
      S.Y. Jing, S.X. Xing, L.X. Yu, Y. Wu, and C. Zhao, Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid, Mater. Lett., 61(2007), No. 13, p. 2794.
      [5]
      Y.H. Lee, J.H. Park, Y.D. Jun, D.W. Kim, J.J. Lee, Y.C. Kim, and S.G. Oh, 3-Mercapto-1,2-propanediol-substituted polyaniline/Ag nanocomposites prepared by concurrent reduction and substitution chemistry, Synth. Met., 158(2008), No. 3-4, p. 143.
      [6]
      S. Bouazza, V. Alonzo, and D. Hauchard, Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material, Synth. Met., 159(2009), No. 15-16, p. 1612.
      [7]
      N.V. Blinova, J. Stejskal, M. Trchová, I. Sapurina, and G. Ćirić-Marjanović, The oxidation of aniline with silver nitrate to polyaniline-silver composites, Polymer, 50(2009), No. 1, p. 50.
      [8]
      J. Stejskal, M. Trchová, J. Kovářová, L. Brožová, and J. Prokeš, The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites, React. Funct. Polym., 69(2009), No. 2, p. 86.
      [9]
      P. Bober, M. Trchová, J. Prokeš, M. Varga, and J. Stejskal, Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids, Electrochim. Acta, 56(2011), No. 10, p. 3580.
      [10]
      P. Bober, J. Stejskal, M. Trchová, and J. Prokeš, Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate:The control of silver content, Polymer, 52(2011), No. 26, p. 5947.
      [11]
      P. Bober, J. Stejskal, M. Trchová, and J. Prokeš, In-situ prepared polyaniline-silver composites:Single-and two-step strategies, Electrochim. Acta, 122(2014), p. 259.
      [12]
      P. Bober, P. Humpoliček, T. Syrový, Z. Capákova, L. Syrová, J. Hromádková, and J. Stejskal, Biological properties of printable polyaniline and polyaniline-silver colloidal dispersions stabilized by gelatin, Synth. Met., 232(2017), p. 52.
      [13]
      F. Roussel, R.C.Y. King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, and J.F. Brun, Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials, Synth. Met., 199(2015), p. 196.
      [14]
      S.M. Huang, J.Q. Xu, X. Tao, X. Chen, F. Zhu, Y. Wang, R.F. Jiang, and G.F. Ouyang, Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization, Talanta 172(2017), p. 155.
      [15]
      R.C. Liu, H. Qiu, H. Li, H. Zong, and C.Y. Fang, Fabrication and characteristics of composite containing HCl-doped polyaniline and Ni nanoparticles, Synth. Met., 160(2010), No. 23-24, p. 2404.
      [16]
      R.C. Liu, H. Qiu, H. Zong, and C.Y. Fang, Fabrication and characterization of composite containing HCl-doped polyaniline and Fe nanoparticles, J. Nanomater., 2012(2012), p. 674104.
      [17]
      Y. Huang, H. Qiu, H. Qian, F.P. Wang, L.Q. Pan, P. Wu, Y. Tian, and X.L. Huang, Effect of annealing on the characteristics of Au/Ni80Fe20 and Au/Ni30Fe70 bilayer films grown on glass, Thin Solid Films, 472(2005), No. 1-2, p. 302.
      [18]
      P. Wu, H. Qiu, Y.Q. Zhao, D.H. Jiang, B. Zhang, X.D. Zhao, X.L. Huang, L.Q. Pan, and Y. Tian, Characteristics of resistivity and structure of silver films deposited in low vacuum, Phys. Exp., 27(2007), No. 3, p. 3.
      [19]
      P.N. Adams, P.J. Laughlin, A.P. Monkman, and A.M. Kenwright, Low temperature synthesis of high molecular weight polyaniline, Polymer, 37(1996), No. 15, p. 3411.
      [20]
      M.E. Jozefowicz, R. Laversanne, H.H.S. Javadi, A.J. Epstein, J.P. Pouget, X. Tang, and A.G. MacDiarmid, Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline, Phys. Rev. B, 39(1989), No. 17, p. 12958.
      [21]
      J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang, and A.G. MacDiarmid, X-ray structure of polyaniline, Macromolecules, 24(1991), No. 3, p. 779.
      [22]
      C. Nath and A. Kumar, Fractal like charge transport in polyaniline nanostructures, Phys. B, 426(2013), p. 94.
      [23]
      G.E. Asturias, A.G. MacDiarmid, R.P. McCall, and A.J. Epstein, The oxidation state of "emeraldine" base, Synth. Met., 29(1989), No. 1, p. 157.
      [24]
      J.S. Tang, X.B. Jin, B.C. Wang, and F.S. Wang, Infrared spectra of soluble polyaniline, Synth. Met., 24(1988), No. 3, p. 231.
      [25]
      T.D. Castillo-Castro, E. Larios-Rodriguez, Z. Molina-Arenas, M.M. Castillo-Ortega, and J. Tanori, Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites, Compos. Part A, 38(2007), No. 1, p. 107.
      [26]
      K. Gupta, P.C. Jana, and A.K. Meikap, Optical and electrical transport properties of polyaniline-silver nanocomposite, Synth. Met., 160(2010), No. 13-14, p. 1566.
      [27]
      H.B. Gu, J. Guo, X.R. Yan, H.G. Wei, X. Zhang, J.R. Liu, Y.D. Huang, S.Y. Wei, and Z.H. Guo, Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites, Polymer, 55(2014), No. 17, p. 4405.
      [28]
      M. Ghosh, A. Barman, A. K. Meikap, S. K. De, and S. Chatterjee, Hopping transport in HCl doped conducting polyaniline, Phys. Lett. A, 260(1999), No. 1-2, p. 138.
      [29]
      A.P. Singh, S.A. Kumar, A. Chandra, and S.K. Dhawan, Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band, AIP Adv., 1(2011), No. 2, art. No. 022147.
      [30]
      S.A. Kumar, A.P. Singh, P. Saini, F. Khatoon, and S.K. Dhawan, Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3, J. Mater. Sci., 47(2012), No. 5, p. 2461.

    Catalog


    • /

      返回文章
      返回