留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 11
Nov.  2018
数据统计

分享

计量
  • 文章访问数:  600
  • HTML全文浏览量:  105
  • PDF下载量:  11
  • 被引次数: 0
Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury,  and M. H. Monir, Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1335-1343. https://doi.org/10.1007/s12613-018-1687-3
Cite this article as:
Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury,  and M. H. Monir, Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1335-1343. https://doi.org/10.1007/s12613-018-1687-3
引用本文 PDF XML SpringerLink
研究论文

Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

  • 通讯作者:

    Mohammad Nur E Alam Al Nasim    E-mail: s3612596@student.rmit.edu.au

  • A systematic investigation was carried out to observe the deposition rate of a diamond-like carbon (DLC) coating on two stainless steel substrates by chemical vapor deposition (CVD). The objective of this research is to study the deposition behavior of the DLC coating and its tribological properties in different combinations of methane (CH4) and nitrogen, which were used as precursor gases. The results reveal that the deposition rate increases with increasing CH4 content up to 50vol%. The hardness of the DLC-deposited layer also increases while the friction coefficient decreases with increasing CH4 gas content up to 50% in the precursor gas mixture.
  • Research Article

    Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition

    + Author Affiliations
    • A systematic investigation was carried out to observe the deposition rate of a diamond-like carbon (DLC) coating on two stainless steel substrates by chemical vapor deposition (CVD). The objective of this research is to study the deposition behavior of the DLC coating and its tribological properties in different combinations of methane (CH4) and nitrogen, which were used as precursor gases. The results reveal that the deposition rate increases with increasing CH4 content up to 50vol%. The hardness of the DLC-deposited layer also increases while the friction coefficient decreases with increasing CH4 gas content up to 50% in the precursor gas mixture.
    • loading
    • [1]
      K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2003), No. 2, p. 57.
      [2]
      L.H. Lai, S.E. Chiou, H.C. Hsueh, and S.T. Shiue, Effects of propane/nitrogen mixtures on thermal chemical vapor deposition rates and microstructures of carbon films, ECS J. Solid State Sci. Technol., 2(2013), No. 11, p. M44.
      [3]
      R.H. Lee, L.H. Lai, and S.T. Shiue, Effects of different acetylene/nitrogen ratios on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor deposition, Thin Solid Films, 518(2010), No. 24, p. 7267.
      [4]
      J.C. Angus, Diamond synthesis by chemical vapor deposition:The early years, Diamond Relat. Mater., 49(2014), p. 77.
      [5]
      V. Ralchenko, I. Sychov, I. Vlasov, A. Vlasov, V. Konov, A.V. Khomich, and S. Voronina, Quality of diamond wafers grown by microwave plasma CVD:Effects of gas flow rate, Diamond Relat. Mater., 8(1999), No. 2, p. 189.
      [6]
      R.S. Sussmann, G.A. Scarsbrook, C.J.H. Wort, and R.M. Wood, Laser damage testing of CVD-grown diamond windows, Diamond Relat. Mater., 3(1994), No. 9, p. 1173.
      [7]
      P. Koidl and C.P. Klages, Optical applications of polycrystalline diamond, Diamond Relat. Mater., 1(1992), No. 10-11, p. 1065.
      [8]
      Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman, Applications of Diamond Films and Related Materials, Elsevier, Amsterdam, 1991.
      [9]
      L.Y.S. Pang, S.S.M. Chan, C. Johnston, P.R. Chalker, and R.B. Jackman, High temperature polycrystalline diamond metal-insulator-semiconductor field-effect-transistor, Diamond Relat. Mater., 6(1997), No. 2-4, p. 333.
      [10]
      T. Ando, T. Aizawa, M. Kamo, Y. Sato, T. Anzai, H. Yamomoto, A. Wada, K. Domen, and C. Hirose, Advances in New Diamond Science and Technology, S. Saito, N. Fujirnory, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yoshikawa, eds., MYU, Tokyo, 1994, 461.
      [11]
      J. Shi, Z.B. Gong, Y.F. Wang, K.X. Gao, and J.Y. Zhang, Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films:Relative humidity dependent character, Appl. Surf. Sci., 422(2017), p. 147. A
      [12]
      A. Gicquel, K. Hassouni, F. Silva, and J. Achard, CVD diamond films:from growth to applications, Curr. Appl. Phys., 1(2001), No. 6, p. 479.
      [13]
      C. Zeng, Q.Y. Chen, M. Xu, S.H. Deng, Y. Luo, and T. Wu, Enhancement of mechanical, tribological and morphological properties of nitrogenated diamond-like carbon films by gradient nitrogen doping, Diamond Relat. Mater., 76(2017), p. 132.
      [14]
      S. Kruehong, C. Kruehong, and A. Artnaseaw, Branched carbon fibres and other carbon nanomaterials grown directly from 304 stainless steel using a chemical vapour deposition process, Diamond Relat. Mater., 64(2016), p. 143.
      [15]
      S. Saketi and M. Olsson, Influence of CVD and PVD coating micro topography on the initial material transfer of 316L stainless steel in sliding contacts-A laboratory study, Wear, 388-389(2017), p. 29.
      [16]
      S.J. Wu, H. Kousaka, S. Kar, D. Li, and J.H. Su, Friction and wear performance of bearing ball sliding against diamond-like carbon coatings, Mater. Res. Express, 4(2017), No. 1, p. 015602.
      [17]
      Y. Niiyama, N. Shimizu, A. Kuwayama, H. Okada, T. Takeno, K. Kurihara, and K. Adachi, Effect of running-in for delamination and friction properties of self-mating diamond-like carbon coatings in water, Wear, 378-379(2017), p. 27.
      [18]
      E.L. Dalibón, L. Escalada, S. Simison, C. Forsich, D. Heim, and S.P. Brühl, Mechanical and corrosion behavior of thick and soft DLC coatings, Surf. Coat. Technol., 312(2017), p. 101.
      [19]
      A.W. Zia, Z.F. Zhou, and L.K.Y. Li, A preliminary wear studies of isolated carbon particles embedded diamond-like carbon coatings, Tribol. Int., 114(2017), p. 42.
      [20]
      M.N. Gardos, Tribology and wear behavior of diamond,[in] Synthetic Diamond:Emerging CVD Science and Technology, K.E. Spear, and J.P. Dismukes, eds., John Wiley & Sons, Inc., New York, 1994, p. 419.
      [21]
      A. Grill, Review of the tribology of diamond-like carbon, Wear, 168(1993), No. 1-2, p. 143.
      [22]
      M.M. Rahman, S. Talukdar, M.A. Chowdhury, R. Khan, A.A. Masum, and N. Islam, Effects of Acetylene on deposition rate of stainless steels using thermal chemical vapor deposition, Int. J. Eng. Res. Afr., 23(2016), p. 7.
      [23]
      M.M. Rahman, M.A. Chowdhury, D.M. Nuruzzaman, U.K. Debnath, M.A. Kowser, and B.K. Roy, Deposition rates on stainless steel substrates of different surface roughnesses under different operating conditions using thermal CVD, Int. J. Surf. Sci. Eng., 10(2016), No. 3, p. 282.
      [24]
      N.M. Rodriguez, A review of catalytically grown carbon nanofibers, J. Mater. Res., 8(1993), No. 12, p. 3233.
      [25]
      J. Kong, A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett., 292(1998), No. 4-6, p. 567.
      [26]
      T.M. Manhabosco and I.L. Müller, Tribocorrosion of diamond-like carbon deposited on Ti6Al4V, Tribol. Lett., 33(2009), No. 3, p. 193.
      [27]
      A.K. Mallik, N. Dandapat, P. Ghosh, U. Ganguly, S. Jana, S. Das, K. Guha, G. Rebello, S.K. Lahiri, and S. Datta, Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials, Bull. Mater. Sci., 36(2013), No. 2, p. 193.
      [28]
      M. Panda, G. Mangamma, R. Krishnan, K.K. Madapu, D.N.G. Krishna, S. Dash, and A. Tyagi, Nano scale investigation of particulate contribution to diamond like carbon film by pulsed laser deposition, RSC Adv., 6(2016), No. 8, p. 6016.
      [29]
      R.O. Dillon, J.A. Woollam, and V. Katkanant, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films, Phys. Rev. B, 29(1984), No. 6, p. 3482.

    Catalog


    • /

      返回文章
      返回