Cite this article as: |
Tao Xu, Xiao-jun Ning, Guang-wei Wang, Wang Liang, Jian-liang Zhang, Yan-jiang Li, Hai-yang Wang, and Chun-he Jiang, Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1412-1422. https://doi.org/10.1007/s12613-018-1695-3 |
Xiao-jun Ning E-mail: ningxj@ustb.edu.cn
Guang-wei Wang E-mail: wgw676@163.com
[1] |
Q.Q. Chen, Y. Gu, Z.Y. Tang, W. Wei, and Y.H. Sun, Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies:A case study in China, Appl. Energy, 220(2018), p. 192.
|
[2] |
G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, G.H. Zhang, T. Xu, J. Guo, H.Y. Wang, R.S. Xu, and H. Lin, Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), p. 414.
|
[3] |
S. Ren, S.L. Li, J. Yang, H.M. Long, J. Yang, M. Kong, and Z.L. Cai, Poisoning effects of KCl and As2O3 on selective catalytic reduction of NO with NH3 over Mn-Ce/AC catalysts at low temperature, Chem. Eng. J., 351(2018), p. 540.
|
[4] |
U. Leimalm, M. Lundgren, L.S. Okvist, and B. Bjorkman, Off-gas dust in an experimental blast furnace part 1:Characterization of flue dust, sludge and shaft fines, ISIJ Int., 50(2010), No. 11, p. 1560.
|
[5] |
C. Lanzerstorfer, B. Bamberger-Strassmayr, and K. Pilz, Recycling of blast furnace dust in the iron ore sintering process:Investigation of coke breeze substitution and the influence on off-gas emissions, ISIJ Int., 55(2015), No. 4, p. 758.
|
[6] |
V. Trinkel, O. Mallow, P. Aschenbrenner, H. Rechberger, and J. Fellner, Characterization of blast furnace sludge with respect to heavy metal distribution, Ind. Eng. Chem. Res., 55(2016), No. 19, p. 5590.
|
[7] |
N.A. El-Hussiny, M.E.H. Shalabi, Effect of recycling blast furnace flue dust as pellets on the sintering performance, Sci. Sintering, 42(2010), No. 3, p. 269.
|
[8] |
P.K. Singh, P.K. Katiyar, A.L. Kumar, B. Chaithnya, and S. Pramanik, Effect of sintering performance of the utilization of blast furnace solid wastes as pellets, Procedia Mater. Sci., 5(2014), p. 2468.
|
[9] |
C. Zou and J.X. Zhao, Investigation of iron-containing powder on coal combustion behavior, J. Energy Inst., 90(2017), No. 5, p. 797.
|
[10] |
Y.W. Zhong, X.L. Qiu, J.T. Gao, and Z.C. Guo, Structural characterization of carbon in blast furnace flue dust and its reactivity in combustion, Energy Fuels, 31(2017), No. 8, p. 8415.
|
[11] |
L.Z. Shen, Y.S. Qiao, Y. Guo, and J.R. Tan, Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust, J. Hazard. Mater., 177(2010), No. 1-3, p. 495.
|
[12] |
G.W. Wang, J.L. Zhang, G.H. Zhang, X.J. Ning, X.Y. Li, Z.J. Liu, and J. Guo, Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends, Energy, 131(2017), p. 27.
|
[13] |
G.W. Wang, J.L. Zhang, J.G. Shao, and S. Ren, Characterisation and model fitting kinetic analysis of coal/biomass co-combustion, Thermochim. Acta, 591(2014), p. 68.
|
[14] |
G. Yakovlev, V. Khozin, I. Polyanskikh, J. Keriene, A. Gordina, and T. Petrova, Utilization of blast furnace flue dust while modifying gypsum binders with carbon nanostructures,[in] The 9th Conference "Environmental Engineering", Vilnius, 2014, art. No. enviro.2014.025.
|
[15] |
R. Robinson, High temperature properties of by-product cold bonded pellets containing blast furnace flue dust, Thermochim. Acta, 432(2005), No. 1, p. 112.
|
[16] |
D. Zhao, J.L. Zhang, G.W. Wang, A.N. Conejo, R.S. Xu, H.Y. Wang, and J.B. Zhong, Structure characteristics and combustibility of carbonaceous materials from blast furnace flue dust, Appl. Therm. Eng., 108(2016), p. 1168.
|
[17] |
A.W. Coats and J. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201(1964), p. 68.
|
[18] |
G.Q. Liu, Q.C. Liu, X.Q. Wang, F. Meng, S. Ren, and Z.P. Ji, Combustion characteristics and kinetics of anthracite blending with pine sawdust, J. Iron Steel Res. Int., 22(2015), No. 9, p. 812.
|
[19] |
X.J. Li, J. Hayashi, and C.Z. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel, 85(2006), No. 12-13, p. 1700.
|
[20] |
T.S. Farrow, C.G. Sun, and C.E, Snape. Impact of biomass char on coal char burn-out under air and oxy-fuel conditions, Fuel, 114(2013), p. 128.
|
[21] |
X.G. Li, B.G. Ma, L. Xu, Z.W. Hu, and X.G. Wang, Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres, Thermochim. Acta, 441(2006), No. 1, p. 79.
|
[22] |
B.G. Ma, X.G. Li, L. Xu, K. Wang, and X.G. Wang, Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis, Thermochim. Acta, 445(2006), No. 1, p. 19.
|
[23] |
Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, and Y.Q. Xi, A comprehensive review on the applications of coal fly ash, Earth Sci. Rev., 141(2015), p. 105.
|