Cite this article as: |
Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1482-1492. https://doi.org/10.1007/s12613-018-1703-7 |
Jin-jun Cai E-mail: caijj@xtu.edu.cn,j.cai@qmul.ac.uk
[1] |
D.S. Su and R. Schloögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, ChemSusChem, 3(2010), No. 2, p. 136.
|
[2] |
G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41(2012), No. 2, p. 797.
|
[3] |
A.P. Periasamy, R. Ravindranath, P. Roy, W.P. Wu, H.T. Chang, P.V. Veerakkumar, and S.B. Liu, Carbon-boron core-shell microspheres for the oxygen reduction reaction, J. Mater. Chem. A, 4(2016), No. 33, p. 12987.
|
[4] |
D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater., 19(2009), No. 11, p. 1800.
|
[5] |
T. Cordero-Lanzac, J.M. Rosas, F.J. García-Mateos, J.J. Ternero-Hidalgo, J. Palomo, J. Rodríguez-Mirasol, and T. Cordero, Role of different nitrogen functionalities on the electrochemical performance of activated carbons, Carbon, 126(2018), p. 65.
|
[6] |
L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A, 4(2016), No. 39, p. 15006.
|
[7] |
L. Wan, E. Shamsaei, C.D. Easton, D.B. Yu, Y. Liang, X.F. Chen, Z. Abbasi, A. Akbari, X.W. Zhang, and H.T. Wang, ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor, Carbon, 121(2017), p. 330.
|
[8] |
Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A.V. Kvit, S. Kaskel, and G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano, 4(2010), No. 3, p. 1337.
|
[9] |
M. Zhou, F. Pu, Z. Wang, and S.Y. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors, Carbon, 68(2014), p. 185.
|
[10] |
B. Xu, S.S. Hou, F.L. Zhang, G.P. Cao, M. Chu, and Y.S. Yang, Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors, J. Electroanal. Chem., 712(2014), p. 146.
|
[11] |
Z.X. Ma, T. Kyotani, Z. Liu, O. Terasaki, and A. Tomita, Very high surface area microporous carbon with a three-dimensional nano-array structure synthesis and its molecular structure, Chem. Mater., 13(2001), No. 12, p. 4413.
|
[12] |
C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, and F. Béguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template, Adv. Funct. Mater., 17(2007), No. 11, p. 1828.
|
[13] |
J. Zhou, W. Li, Z.S. Zhang, X.Z. Wu, W. Xing, and S.P. Zhuo, Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance, Electrochim. Acta, 89(2013), p. 763.
|
[14] |
W. Li, J. Zhou, W. Xing, S.P. Zhuo, and Y.M. Lv, Preparation of microporous carbon using a zeolite HY template and its capacitive performance, Acta Phys. Chim. Sin., 27(2011), No. 3, p. 620.
|
[15] |
S. Leyva-García, K. Nueangnoraj, D. Lozano-Castelló, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy, Carbon, 89(2015), p. 63.
|
[16] |
M.J. Mostazo-López, R. Ruiz-Rosas, A. Castro-Muñiz, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors, Carbon, 129(2018), p. 510.
|
[17] |
N.P. Stadie, S.T. Wang, K.V. Kravchyk, and M.V. Kovalenko, Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries, ACS Nano, 11(2017), No. 2, p. 1911.
|
[18] |
K. Nueangnoraj, H. Nishihara, T. Ishii, N. Yamamoto, H. Itoi, R. Berenguer, R. Ruiz-Rosas, D. Cazorla-Amorós, E. Morallón, M. Ito, and T. Kyotani, Pseudocapacitance of zeolite-templated carbon in organic electrolytes, Energy Storage Mater., 1(2015), p. 35.
|
[19] |
H. Nishihara, H. Itoi, T. Kogure, P.X. Hou, H. Touhara, F. Okino, and T. Kyotani, Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials, Chem. Eur. J., 15(2009), No. 21, p. 5355.
|
[20] |
H. Xu, Q.M. Gao, H.L. Guo, and H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor, Microporous Mesoporous Mater., 133(2010), No. 1-3, p. 106.
|
[21] |
X. Huang, Q. Wang, X.Y. Chen, and Z.J. Zhang, N-doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose:the systematic comparison of different nitridation agents, J. Electroanal. Chem., 748(2015), p. 23.
|
[22] |
W.W. Gao, H. Huang, H.Y. Shi, X. Feng, and W.B. Song, Nitrogen-rich graphene from small molecules as high performance anode material, Nanotechnology, 25(2014), No. 41, art. No. 415402.
|
[23] |
J.J. Cai, L.J. Li, X.X. Lv, C.P. Yang, and X.B. Zhao, Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application, ACS Appl. Mater. Interfaces, 6(2014), No. 1, p. 167.
|
[24] |
Z.X. Ma, T. Kyotani, and A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40(2002), No. 13, p. 2367.
|
[25] |
M. Wahid, G. Parte, D. Phase, and S. Ogale, Yogurt:a novel precursor for heavily nitrogen doped supercapacitor carbon, J. Mater. Chem. A, 3(2015), No. 3, p. 1208.
|
[26] |
T.T. Liu, E.H. Liu, R. Ding, Z.Y. Luo, T.T. Hu, and Z.P. Li, Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization, Electrochim. Acta, 173(2015), p. 50.
|
[27] |
S. Zhang, K. Tian, B.H. Cheng, and H. Jiang, Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes, ACS Sustainable Chem. Eng., 5(2017), No. 8, p. 6682.
|
[28] |
H.M. Wei, H.J. Chen, N. Fu, J. Chen, G.X. Lan, W. Qian, Y.P. Liu, H.L. Lin, and S. Han, Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells, Electrochim. Acta, 231(2017), p. 403.
|
[29] |
K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii, M. Kiguchi, Y. Sato, M. Terauchi, and T. Kyotani, Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y, Carbon, 62(2013), p. 455.
|
[30] |
B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, and R.Q. Zou, Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A, 6(2018), No. 4, No. p. 1523.
|
[31] |
J.S. Moon, H. Kim, D.C. Lee, J.T. Lee, and G. Yushin, Increasing capacitance of zeolite-templated carbons in electric double layer capacitors, J. Electrochem. Soc., 162(2015), No. 5, p. A5070.
|
[32] |
W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang, and S.C. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 49(2011), No. 3, p. 838.
|
[33] |
Z.W. Tian, M. Xiang, J.C. Zhou, L.Q. Hu, and J.J. Cai, Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass:direct carbonization and excellent electrochemical properties, Electrochim. Acta, 211(2016), p. 225.
|
[34] |
F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties, Energy Environ. Sci., 4(2011), No. 3, p. 717.
|
[35] |
L. Sun, C.L. Wang, Y. Zhou, Q. Zhao, X. Zhang, and J.S. Qiu, Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors, J. Solid State Electrochem., 18(2014), No. 1, p. 49.
|
[36] |
W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397.
|
[37] |
X.X. Wu, Z.W. Tian, L.Q. Hu, S. Huang, and J.J. Cai, Macroalgae-derived nitrogen-doped hierarchical porous carbons with high performance for H2 storage and supercapacitors, RSC Adv., 7(2017), No. 52, p. 32795.
|
[38] |
M. Ren, Z.Y. Jia, Z.W. Tian, D. López, J.J. Cai, M.M. Titirici, and A.B. Jorge, High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications, ChemElectroChem, 5(2018), No. 18, p. 2686.
|
Int. J. Miner. Metall. Mater., 2025, 32 (1) : 201-213
Choulong Veann, Thongsuk Sichumsaeng, Ornuma Kalawa, Narong Chanlek, Pinit Kidkhunthod, Santi Maensiri. Structure and electrochemical performance of delafossite AgFeO2 nanoparticles for supercapacitor electrodes[J]. International Journal of Minerals, Metallurgy and Materials, 2025, 32(1): 201-213. doi: 10.1007/s12613-024-2992-7
Int. J. Miner. Metall. Mater., 2024, 32 : 1-13
Yi Hu, Yijia Zhou, Lijia Liu, Qiang Wang, Chunhong Zhang, Hao Wei, Yudan Wang. Iron–nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption[J]. International Journal of Minerals, Metallurgy and Materials. doi: 10.1007/s12613-024-2863-2
限域于三维多孔碳的超细纳米尺度Cu2Sb合金用于钠离子和钾离子电池负极
Int. J. Miner. Metall. Mater., 2021, 28 (10) : 1666-1674
Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, Yan-guo Liu. Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(10): 1666-1674. doi: 10.1007/s12613-021-2286-2
Sergio Orozco-Barrera, Keigo Wakabayashi, Takeharu Yoshii, et al. Polyelectrolyte-coated zeolite-templated carbon electrodes for capacitive deionization and energy generation by salinity exchange. Separation and Purification Technology, 2025, 354: 129314.doi: 10.1016/j.seppur.2024.129314 | |
Min Liu, Huachen Lin, Lin Sun, et al. Enhanced charge storage in supercapacitors using carbon nanotubes and N-doped graphene quantum dots-modified (NiMn)Co2O4. Journal of Colloid and Interface Science, 2025, 678: 763.doi: 10.1016/j.jcis.2024.09.039 | |
Eugene Sefa Appiah, Perseverance Dzikunu, Samuel Olukayode Akinwamide, et al. A review on progress and prospects of diatomaceous earth as a bio-template material for electrochemical energy storage: synthesis, characterization, and applications. Ionics, 2024.doi: 10.1007/s11581-024-05825-6 | |