留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 25 Issue 12
Dec.  2018
数据统计

分享

计量
  • 文章访问数:  652
  • HTML全文浏览量:  112
  • PDF下载量:  27
  • 被引次数: 19
Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1482-1492. https://doi.org/10.1007/s12613-018-1703-7
Cite this article as:
Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, pp. 1482-1492. https://doi.org/10.1007/s12613-018-1703-7
引用本文 PDF XML SpringerLink
研究论文

Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors

  • 通讯作者:

    Jin-jun Cai    E-mail: caijj@xtu.edu.cn,j.cai@qmul.ac.uk

  • N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700℃ showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.
  • Research Article

    Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors

    + Author Affiliations
    • N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700℃ showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.
    • [1]
      D.S. Su and R. Schloögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, ChemSusChem, 3(2010), No. 2, p. 136.
      [2]
      G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41(2012), No. 2, p. 797.
      [3]
      A.P. Periasamy, R. Ravindranath, P. Roy, W.P. Wu, H.T. Chang, P.V. Veerakkumar, and S.B. Liu, Carbon-boron core-shell microspheres for the oxygen reduction reaction, J. Mater. Chem. A, 4(2016), No. 33, p. 12987.
      [4]
      D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater., 19(2009), No. 11, p. 1800.
      [5]
      T. Cordero-Lanzac, J.M. Rosas, F.J. García-Mateos, J.J. Ternero-Hidalgo, J. Palomo, J. Rodríguez-Mirasol, and T. Cordero, Role of different nitrogen functionalities on the electrochemical performance of activated carbons, Carbon, 126(2018), p. 65.
      [6]
      L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A, 4(2016), No. 39, p. 15006.
      [7]
      L. Wan, E. Shamsaei, C.D. Easton, D.B. Yu, Y. Liang, X.F. Chen, Z. Abbasi, A. Akbari, X.W. Zhang, and H.T. Wang, ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor, Carbon, 121(2017), p. 330.
      [8]
      Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A.V. Kvit, S. Kaskel, and G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano, 4(2010), No. 3, p. 1337.
      [9]
      M. Zhou, F. Pu, Z. Wang, and S.Y. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors, Carbon, 68(2014), p. 185.
      [10]
      B. Xu, S.S. Hou, F.L. Zhang, G.P. Cao, M. Chu, and Y.S. Yang, Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors, J. Electroanal. Chem., 712(2014), p. 146.
      [11]
      Z.X. Ma, T. Kyotani, Z. Liu, O. Terasaki, and A. Tomita, Very high surface area microporous carbon with a three-dimensional nano-array structure synthesis and its molecular structure, Chem. Mater., 13(2001), No. 12, p. 4413.
      [12]
      C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, and F. Béguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template, Adv. Funct. Mater., 17(2007), No. 11, p. 1828.
      [13]
      J. Zhou, W. Li, Z.S. Zhang, X.Z. Wu, W. Xing, and S.P. Zhuo, Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance, Electrochim. Acta, 89(2013), p. 763.
      [14]
      W. Li, J. Zhou, W. Xing, S.P. Zhuo, and Y.M. Lv, Preparation of microporous carbon using a zeolite HY template and its capacitive performance, Acta Phys. Chim. Sin., 27(2011), No. 3, p. 620.
      [15]
      S. Leyva-García, K. Nueangnoraj, D. Lozano-Castelló, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy, Carbon, 89(2015), p. 63.
      [16]
      M.J. Mostazo-López, R. Ruiz-Rosas, A. Castro-Muñiz, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla-Amorós, Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors, Carbon, 129(2018), p. 510.
      [17]
      N.P. Stadie, S.T. Wang, K.V. Kravchyk, and M.V. Kovalenko, Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries, ACS Nano, 11(2017), No. 2, p. 1911.
      [18]
      K. Nueangnoraj, H. Nishihara, T. Ishii, N. Yamamoto, H. Itoi, R. Berenguer, R. Ruiz-Rosas, D. Cazorla-Amorós, E. Morallón, M. Ito, and T. Kyotani, Pseudocapacitance of zeolite-templated carbon in organic electrolytes, Energy Storage Mater., 1(2015), p. 35.
      [19]
      H. Nishihara, H. Itoi, T. Kogure, P.X. Hou, H. Touhara, F. Okino, and T. Kyotani, Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials, Chem. Eur. J., 15(2009), No. 21, p. 5355.
      [20]
      H. Xu, Q.M. Gao, H.L. Guo, and H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor, Microporous Mesoporous Mater., 133(2010), No. 1-3, p. 106.
      [21]
      X. Huang, Q. Wang, X.Y. Chen, and Z.J. Zhang, N-doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose:the systematic comparison of different nitridation agents, J. Electroanal. Chem., 748(2015), p. 23.
      [22]
      W.W. Gao, H. Huang, H.Y. Shi, X. Feng, and W.B. Song, Nitrogen-rich graphene from small molecules as high performance anode material, Nanotechnology, 25(2014), No. 41, art. No. 415402.
      [23]
      J.J. Cai, L.J. Li, X.X. Lv, C.P. Yang, and X.B. Zhao, Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application, ACS Appl. Mater. Interfaces, 6(2014), No. 1, p. 167.
      [24]
      Z.X. Ma, T. Kyotani, and A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40(2002), No. 13, p. 2367.
      [25]
      M. Wahid, G. Parte, D. Phase, and S. Ogale, Yogurt:a novel precursor for heavily nitrogen doped supercapacitor carbon, J. Mater. Chem. A, 3(2015), No. 3, p. 1208.
      [26]
      T.T. Liu, E.H. Liu, R. Ding, Z.Y. Luo, T.T. Hu, and Z.P. Li, Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization, Electrochim. Acta, 173(2015), p. 50.
      [27]
      S. Zhang, K. Tian, B.H. Cheng, and H. Jiang, Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes, ACS Sustainable Chem. Eng., 5(2017), No. 8, p. 6682.
      [28]
      H.M. Wei, H.J. Chen, N. Fu, J. Chen, G.X. Lan, W. Qian, Y.P. Liu, H.L. Lin, and S. Han, Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells, Electrochim. Acta, 231(2017), p. 403.
      [29]
      K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii, M. Kiguchi, Y. Sato, M. Terauchi, and T. Kyotani, Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y, Carbon, 62(2013), p. 455.
      [30]
      B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, and R.Q. Zou, Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A, 6(2018), No. 4, No. p. 1523.
      [31]
      J.S. Moon, H. Kim, D.C. Lee, J.T. Lee, and G. Yushin, Increasing capacitance of zeolite-templated carbons in electric double layer capacitors, J. Electrochem. Soc., 162(2015), No. 5, p. A5070.
      [32]
      W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang, and S.C. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 49(2011), No. 3, p. 838.
      [33]
      Z.W. Tian, M. Xiang, J.C. Zhou, L.Q. Hu, and J.J. Cai, Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass:direct carbonization and excellent electrochemical properties, Electrochim. Acta, 211(2016), p. 225.
      [34]
      F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties, Energy Environ. Sci., 4(2011), No. 3, p. 717.
      [35]
      L. Sun, C.L. Wang, Y. Zhou, Q. Zhao, X. Zhang, and J.S. Qiu, Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors, J. Solid State Electrochem., 18(2014), No. 1, p. 49.
      [36]
      W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397.
      [37]
      X.X. Wu, Z.W. Tian, L.Q. Hu, S. Huang, and J.J. Cai, Macroalgae-derived nitrogen-doped hierarchical porous carbons with high performance for H2 storage and supercapacitors, RSC Adv., 7(2017), No. 52, p. 32795.
      [38]
      M. Ren, Z.Y. Jia, Z.W. Tian, D. López, J.J. Cai, M.M. Titirici, and A.B. Jorge, High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications, ChemElectroChem, 5(2018), No. 18, p. 2686.

    Catalog



    • Sergio Orozco-Barrera, Keigo Wakabayashi, Takeharu Yoshii, et al. Polyelectrolyte-coated zeolite-templated carbon electrodes for capacitive deionization and energy generation by salinity exchange. Separation and Purification Technology, 2025, 354: 129314.doi: 10.1016/j.seppur.2024.129314
      Min Liu, Huachen Lin, Lin Sun, et al. Enhanced charge storage in supercapacitors using carbon nanotubes and N-doped graphene quantum dots-modified (NiMn)Co2O4. Journal of Colloid and Interface Science, 2025, 678: 763.doi: 10.1016/j.jcis.2024.09.039
      Eugene Sefa Appiah, Perseverance Dzikunu, Samuel Olukayode Akinwamide, et al. A review on progress and prospects of diatomaceous earth as a bio-template material for electrochemical energy storage: synthesis, characterization, and applications. Ionics, 2024.doi: 10.1007/s11581-024-05825-6
    • /

      返回文章
      返回