Peng Fei, Yi Min, Cheng-jun Liu, and Mao-fa Jiang, Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions, Int. J. Miner. Metall. Mater., 26(2019), No. 2, pp.186-193. https://dx.doi.org/10.1007/s12613-019-1723-y |
M. Takahashi, Sheet steel technology for the last 100 years:Progress in sheet steels in hand with the automotive industry, ISIJ Int., 55(2015), No. 1, p. 79. |
T. EMI, Steelmaking technology for the last 100 years:toward highly efficient mass production systems for high quality steels, ISIJ Int., 55(2015), No. 1, p. 36. |
H.X. Yu, C.X. Ji, B. Chen, C. Wang, and Y.H. Zhang, Characteristics and evolution of inclusion induced surface defects of cold rolled IF sheet, J. Iron Steel Res. Int., 22(2015), Suppl. 1, p. 17. |
B.G. Thomas, Review on modeling and simulation of continuous casting, Steel Res. Int., 89(2018), No. 1, art. No. 1700312. |
M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno, Model study on the entrapment of mold powder into molten steel, ISIJ Int., 40(2000), No. 7, p. 685. |
B.G. Thomas, Modeling of the continuous casting of steel-past, present, and future, Metall. Mater. Trans., B, 33(2002), No. 6, p. 795. |
X.X. Deng, L.P. Li, X.H. Wang, Y.Q. Ji, C.X. Ji, and G.S. Zhu, Subsurface macro-inclusions and solidified hook character in aluminum-killed deep-drawing steel slabs, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 531. |
M.M. Jaradeh and T. Carlberg, Analysis of distribution of nonmetallic inclusions in aluminum DC-cast billets and slabs, Metall. Mater. Trans. B, 43(2012), No. 1, p. 82. |
R. Liu, J Sengupta, D. Crosbie, S. Chung, M. Trinh, and B.G. Thomas, Measurement of molten steel surface velocity with SVC and nail dipping during continuous casting process,[in] Symposium on Sensors, Sampling, and Simulation for Process Control Held during the 140th TMS Annual Meeting and Exhibition, San Diego, 2011, p. 51. |
S.M. Cho, S.H. Kim, and B.G. Thomas, Transient fluid flow during steady continuous casting of steel slabs:part i. measurements and modeling of two-phase flow, ISIJ Int., 54(2014), No. 4, p. 845. |
H.Q. Yu, M.Y. Zhu, and J. Wang, Interfacial fluctuation behavior of steel/slag in medium-thin slab continuous casting mold with argon gas injection, J. Iron Steel Res. Int., 17(2010), No. 4, p. 5. |
Y.B. Yin, J.M. Zhang, S.W. Lei, and Q.P. Dong, Numerical study on the capture of large inclusion in slab continuous casting with the effect of in-mold electromagnetic stirring, ISIJ Int., 57(2017), No. 12, p. 2165. |
B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary, Transport and entrapment of particles in steel continuous casting, Metall. Mater. Trans. B, 45(2014), No. 1, p. 22. |
X.P. Song, S.S. Cheng, and Z.J. Cheng, Numerical computation for metallurgical behavior of primary inclusion in compact strip production mold, ISIJ Int., 52(2012), No. 10, p. 1824. |
C.P. Nie, X.F. Zhang, B. Wang, Y.H. Sun, and Q. Liu, Characteristics of inclusion motion and accumulation in CSP mold, ISIJ Int., 55(2015), No. 8, p. 1677. |
S.M. Cho, H.J. Lee, S.H. Kim, R. Chaudhary, B.G. Thomas, D.H. Lee, Y.J. Kim, W.R. Choi, S.K. Kim, and H.S. Kim, Measurement of transient meniscus flow in steel continuous casters and effect of electromagnetic braking,[in] Symposium on Sensors, Sampling, and Simulation for Process Control Held during the 140th TMS Annual Meeting and Exhibition, San Diego, 2011, p. 59. |
A.V. Karasev and H. Suito, Characteristics of fine oxide particles produced by Ti/M (M=Mg and Zr) complex deoxidation in Fe-10mass%Ni alloy, ISIJ Int., 48(2008), No. 11, p. 1507. |
D.Y. Wang, M.F. Jiang, H. Matsuura, and F. Tsukihashi, Dynamic evolution of inclusions in Ti-bearing Al-deoxidized molten irons at 1873 K, Steel Res. Int., 85(2014), No. 1, p. 16. |
H.Q. Yu and M.Y. Zhu, Numerical simulation of the effects of electromagnetic brake and argon gas injection on the three-dimensional multiphase flow and heat transfer in slab continuous casting mold, ISIJ Int., 48(2008), No. 5, p. 584. |
N. Kubo, T. Ishii, J. Kubota, and N. Aramaki, Two-phase flow numerical simulation of molten steel and argon gas in a continuous casting mold, ISIJ Int., 42(2002), No. 11, p. 1251. |
R. Chaudhary, G.G. Lee, B.G. Thomas, and S.H. Kim, Transient mold fluid flow with well-and mountain-bottom nozzles in continuous casting of steel, Metall. Mater. Trans. B, 39(2008), No. 6, p. 870. |
R. McDavid and B.G. Thomas, Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds, Metall. Mater. Trans. B, 27(1996), No. 4, p. 672. |
A. Hajari and M. Meratian, Surface turbulence in a physical model of a steel thin slab continuous caster, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 697. |
J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs, Metall. Mater. Trans. A, 37(2006), No. 5, p. 1597. |
Qingshan Yang, Yang Li, Anyuan Deng, et al. A New Type of Magnetic Field Arrangement to Suppress Meniscus Fluctuation in Slab Casting: The Effect on Argon Bubble Multi-size Distribution. Metallurgical and Materials Transactions B, 2025, 56(1): 753.
![]() | |
Xiaoxuan Deng, Huixiang Yu, Haichen Zhou, et al. Optimization of scarfing depth for high quality automotive external panel steel slabs. Ironmaking & Steelmaking: Processes, Products and Applications, 2025.
![]() | |
Zhendong Wang, Jinrui Liu, Heng Cui, et al. Effect of SEN Asymmetric Clogging on Mold Level Fluctuation and Mold Slag Distribution During Continuous Casting. Metallurgical and Materials Transactions B, 2024, 55(4): 2932.
![]() |