Cite this article as: |
Li-ying Huang, Kuai-she Wang, Wen Wang, Kai Zhao, Jie Yuan, Ke Qiao, Bing Zhang, and Jun Cai, Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, pp. 202-209. https://doi.org/10.1007/s12613-019-1725-9 |
Kuai-she Wang E-mail: wangkuaishe888@126.com
Wen Wang E-mail: wangwen2016@126.com
[1] |
F. Popa, I. Chicinaş, D. Frunză, I. Nicodim, and D. Banabic, Influence of high deformation on the microstructure of low-carbon steel, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 273.
|
[2] |
J. Cai, P. Lv, C.L. Zhang, J. Wu, C. Li, and Q.F. Guan, Microstructure and properties of low carbon steel after surface alloying induced by high current pulsed electron beam, Nucl. Instrum. Methods Phys. Res. Sect. B, 410(2017), p. 47.
|
[3] |
D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, and G. Purcek, Formability of friction stir processed low carbon steels used in shipbuilding, J. Mater. Sci. Technol., 34(2018), No. 1, p. 237.
|
[4] |
E.G. Astafurova, G.G. Zakharova, E.V. Naydenkin, S.V. Dobatkin, and G.I. Raab, Influence of equal-channel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT, Phys. Met. Metall., 110(2010), No. 3, p. 260.
|
[5] |
R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Mater., 42(1999), No. 2, p. 163.
|
[6] |
M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297.
|
[7] |
W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, Friction Stir Butt Welding, Great Britain Patent, Appl. 9125978.8, 1991.
|
[8] |
Y.H. Yau, A. Hussain, R.K. Lalwani, H.K. Chan, and N. Hakimi, Temperature distribution study during the friction stir welding process of Al2024-t3 aluminum alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 779.
|
[9] |
A. Rahbar-kelishami, A. Abdollah-zadeh, M.M. Hadavi, R.A. Seraj, and A.P. Gerlich, Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing, Appl. Surf. Sci., 316(2014), p. 501.
|
[10] |
A. Chabok and K. Dehghani, Formation of nanograin in IF steels by friction stir processing, Mater. Sci. Eng. A, 528(2010), No. 1, p. 309.
|
[11] |
K. Dehghani and A. Chabok, Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4325.
|
[12] |
A. Ghasemi-Kahrizsangi and S.F. Kashani-Bozorg, Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing, Surf. Coat. Technol., 209(2012), p. 15.
|
[13] |
R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater Sci. Eng. R, 50(2005), No. 1-2, p. 1.
|
[14] |
W. Wang, K.S. Wang, Q. Guo, and N. Wu, Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy, Rare Met. Mater. Eng., 41(2012), No. 9, p. 1522.
|
[15] |
A. Chabok and K. Dehghani, Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing, J. Mater. Eng. Perform., 22(2013), No. 5, p. 1324.
|
[16] |
M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing, Appl. Surf. Sci., 308(2014), p. 184.
|
[17] |
M. Mehranfar and K. Dehghani, Producing nanostructured super-austenitic steels by friction stir processing, Mater. Sci. Eng. A, 528(2011), No. 9, p. 3404.
|
[18] |
A. Amirafshar and H. Pouraliakbar, Effect of tool pin design on the microstructural evolutions and tribological characteristics of friction stir processed structural steel, Measurement, 68(2015), p. 111.
|
[19] |
D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, and G. Purcek, Formability of friction stir processed low carbon steels used in shipbuilding, J. Mater. Sci. Technol., 34(2018), No. 1, p. 237.
|
[20] |
D.M. Sekban, S.M. Aktarer, H. Zhang, P. Xue, Z.Y. Ma, and G. Purcek, Microstructural and mechanical evolution of a low carbon steel by friction stir processing, Metall. Mater. Trans. A, 48(2017), No. 8, p. 3869.
|
[21] |
Y. Li, F. Wang, and G. Liu, Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel, Corrosion, 60(2004), No. 10, p. 891.
|
[22] |
H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, and Z.Y. Ma, Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel, Mater. Des., 110(2016), p. 802.
|
[23] |
T. Yingsamphancharoen, N. Srisuwan, and A. Rodchanarowan, The electrochemical investigation of the corrosion rates of welded pipe ASTMA106 grade B, Metals, 6(2016), No. 9, p. 207.
|
[24] |
P. Xue, W.D. Li, D. Wang, W.G. Wang, B.L. Xiao, and Z.Y. Ma, Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing, Mater. Sci. Eng. A, 670(2016), p. 153.
|
[25] |
P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang, and Z.Y. Ma, Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel, Mater. Sci. Eng. A, 575(2013), p. 30.
|
[26] |
S.C. Li, G.M. Zhu, and Y.L. Kang, Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C1.1Si1.7Mn steel, J. Alloys Compd., 675(2016), p. 104.
|
[27] |
Z.J. Luo, L.P. Wang, M. Wang, J.C. Shen, and H. Su, Effect of lath martensite/bainite microstructure on strength and toughness of a low carbon martensite steel, Trans. Mater. Heat Treat., 33(2012), No. 2, p. 85.
|
[28] |
S.H. Lee, Y. Saito, K.T. Park, and D.H. Shin, Microstructures and mechanical properties of ultra low carbon if steel processed by accumulative roll bonding process, Mater. Trans., 43(2002), No. 9, p. 2320.
|
[29] |
R.B. Singh, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, Development of high-strength bulk ultrafine-grained low carbon steel produced by equal-channel angular pressing, Metall. Mater. Trans. A, 48(2017), No. 11, p. 5449.
|
[30] |
L.Y. Huang, K.S. Wang, W. Wang, K. Zhao, J. Yuan, Q. Wang, K. Qiao, and J. Cai, Corrosion properties of low carbon steel prepared by submerged friction stir processing, Mater. Corros., 69(2018), No. 8, p. 1077.
|
[31] |
E. Ura-Bińczyk, A. Dobkowska, M. Płocińska, T. Płociński, B. Adamczyk-Cieślak, B. Mazurkiewicz, W. Solarski, J. Banaś, and J. Mizera, The influence of grain refinement on the corrosion rate of carbon steels in fracturing fluids used in shale gas production, Mater. Corros., 68(2017), No. 11, p. 1190.
|
[32] |
Q. Bai, Y. Zuo, X.F. Kong, Y. Gao, S. Dong, and W. Zhang, The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater, J.Ocean Univ. China, 16(2017), No. 1, p. 49.
|