Cite this article as: |
Huan-yu Zhang, Rui Li, Wen-wu Liu, Mei Zhang, and Min Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 387-403. https://doi.org/10.1007/s12613-019-1748-2 |
Min Guo E-mail: guomin@ustb.edu.cn
[1] |
A. Kojima,K. Teshima,Y. Shirai,and T. Miyasaka,Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,J. Am. Chem. Soc.,131(2009),No. 17,p. 6050.
|
[2] |
K. Tanaka,T. Takahashi,T. Ban,T. Kondo,K. Uchida,and N. Miura,Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,Solid State Commun.,127(2003),No. 9-10,p. 619.
|
[3] |
T. Baikie,Y.N. Fang,J.M. Kadro,et al.,Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,J. Mater. Chem. A,1(2013),No. 18,p. 5628.
|
[4] |
C.C. Stoumpos,C.D. Malliakas,and M.G. Kanatzidis,Semiconducting tin and lead iodide perovskites with organic cations:Phase transitions,high mobilities,and near-infrared photoluminescent properties,Inorg. Chem.,52(2013),No. 15,p. 9019.
|
[5] |
S.Y. Sun,T. Salim,N. Mathews,et al.,The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,Energy Environ. Sci.,7(2013),No. 1,p. 399.
|
[6] |
H.S. Kim,C.R. Lee,J.H. Im,et al.,Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,Sci. Rep.,2(2012),art. No. 591.
|
[7] |
NREL,Best Research-Cell Efficiencies [2018-07-16]. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg
|
[8] |
M. Gratzel,The light and shade of perovskite solar cells,Nat. Mater.,13(2014),No. 9,p. 838.
|
[9] |
S.J. Li,Y. Lin,W.W. Tan,et al.,Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes,Int. J. Miner. Metall. Mater.,17(2010),No. 1,p. 92.
|
[10] |
M. Saliba,T. Matsui,J.Y. Seo,et al.,Cesium-containing triple cation perovskite solar cells:Improved stability,reproducibility and high efficiency,Energy Environ. Sci.,9(2016),No. 6,p. 1989.
|
[11] |
W.S. Yang,B.W. Park,E.H. Jung,et al.,Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,Science,356(2017),No. 6345,p. 1376.
|
[12] |
C.W. Liu,R.X. Zhu,A. Ng,et al.,Investigation of high performance TiO2 nanorod array perovskite solar cells,J. Mater. Chem. A,5(2017),No. 30,p. 15970.
|
[13] |
D.Y. Son,J.H. Im,H.S. Kim,and N.G. Park,11% efficient perovskite solar cell based on ZnO nanorods:An effective charge collection system,J. Phys. Chem. C,118(2014),No. 30,p. 16567.
|
[14] |
J.F. Li,Z.L. Zhang,H.P. Gao,Y. Zhang,and Y.L. Mao,Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells,J. Mater. Chem. A,3(2015),No. 38,p. 19476.
|
[15] |
J.Y. Jeng,Y.F. Chiang,M.H. Lee,et al.,CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,Adv. Mater.,25(2013),No. 27,p. 3727.
|
[16] |
H.S. Kim,S.H. Im,and N.G. Park,Organolead halide perovskite:New horizons in solar cell research,J. Phys. Chem. C,118(2014),No. 11,p. 5615.
|
[17] |
F. Aslan,G. Adam,P. Stadler,A. Göktaş,I.H. Mutlu,and N.S. Sariciftci,Sol-gel derived In2S3 buffer layers for inverted organic photovoltaic cells,Sol. Energy,108(2014),p. 230.
|
[18] |
G. Yang,H. Tao,P.L. Qin,W.J. Ke,and G.J. Fang,Recent progress in electron transport layers for efficient perovskite solar cells,J. Mater. Chem. A,4(2016),No. 11,p. 3970.
|
[19] |
J.R. Lian,B. Lu,F.F. Niu,P.J. Zeng,and X.W. Zhan,Electron-transport materials in perovskite solar cells,Small Methods,2(2018),No. 10,p. 1800082.
|
[20] |
Y.P. Xia,P.H. Wang,S.W. Shi,et al.,Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters,Int. J. Miner. Metall. Mater.,24(2017),No. 6,p. 675.
|
[21] |
P. Gao,M. Grätzel,and M.K. Nazeeruddin,Organohalide lead perovskites for photovoltaic applications,Energy Environ. Sci.,7(2014),No. 8,p. 2448.
|
[22] |
Q. Jiang,X.W. Zhang,and J.B. You,SnO2:A wonderful electron transport layer for perovskite solar cells,Small,14(2018),No. 31,art. No. 1801154.
|
[23] |
P. Zhang,J. Wu,T. Zhang,et al.,Perovskite solar cells with ZnO electron-transporting materials,Adv. Mater.,30(2018),No. 3,art. No. 1703737.
|
[24] |
A. Goktas,F. Aslan,B. Yesilata,and I. Boz,Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films:Role of Al doping levels and annealing,Mater. Sci. Semicon. Process.,75(2018),p. 221.
|
[25] |
Z.Q. Zhu and J. Zhou,Rapid growth of ZnO hexagonal tubes by direct microwave heating,Int. J. Miner. Metall. Mater.,17(2010),No. 1,p. 80.
|
[26] |
X.C. Yang,H.X. Wang,B. Cai,Z. Yu,and L.C. Sun,Progress in hole-transporting materials for perovskite solar cells,J. Energy Chem.,27(2018),No. 3,p. 650.
|
[27] |
W.B. Yan,S.Y. Ye,Y.L. Li,et al.,Hole-transporting materials in inverted planar perovskite solar cells,Adv. Energy Mater.,6(2016),No. 17,art. No. 1600474.
|
[28] |
M.M. Lee,J. Teuscher,T. Miyasaka,T.N. Murakami,and H.J. Snaith,Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,Science,338(2012),No. 6107,p. 643.
|
[29] |
M.D. Xiao,F.Z. Huang,W.C. Huang,et al.,A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,Angew. Chem.,53(2014),No. 37,p. 9898.
|
[30] |
N.J. Jeon,J.H. Noh,Y.C. Kim,W.S. Yang,S. Ryu,and S.I. Seok,Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,Nat. Mater.,13(2014),No. 9,p. 897.
|
[31] |
N. Ahn,D.Y. Son,I.H. Jang,S.M. Kang,M. Choi,and N.G. Park,Highly reproducible perovskite solar cells with average efficiency of 18.3% and best Efficiency of 19.7% fabricated via lewis base adduct of lead (Ⅱ) iodide,J. Am. Chem. Soc.,137(2015),No. 27,p. 8696.
|
[32] |
Q. Chen,H.P. Zhou,Z.R. Hong,et al.,Planar heterojunction perovskite solar cells via vapor-assisted solution process,J. Am. Chem. Soc.,136(2014),No. 2,p. 622.
|
[33] |
Z.G. Xiao,C. Bi,Y.C. Shao,et al.,Efficient,high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,Energy Environ. Sci.,7(2014),No. 8,p. 2619.
|
[34] |
W.S. Yang,J.H. Noh,N.J. Jeon,et al.,High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,Science,348(2015),No. 6240,p. 1234.
|
[35] |
L. Yang,A.T. Barrows,D.G. Lidzey,and T. Wang,Recent progress and challenges of organometal halide perovskite solar cells,Rep. Prog. Phys.,79(2016),No. 2,p. 026501.
|
[36] |
J.H. Noh,S.H. Im,J.H. Heo,T.N. Mandal,and S.I. Seok,Chemical management for colorful,efficient,and stable inorganic-organic hybrid nanostructured solar cells,Nano Lett.,13(2013),No. 4,p. 1764.
|
[37] |
G.D. Niu,X.D. Guo,and L.D. Wang,Review of recent progress in chemical stability of perovskite solar cells,J. Mater. Chem. A,3(2015),No. 17,p. 8970.
|
[38] |
T.A. Berhe,W.N. Su,C.H. Chen,et al.,Organometal halide perovskite solar cells:Degradation and stability,Energy Environ. Sci.,9(2016),No. 2,p. 323.
|
[39] |
Q. Jiang,Z.M. Chu,P.Y. Wang,et al.,Planar-structure perovskite solar cells with efficiency beyond 21%,Adv. Mater.,29(2017),No. 46,art. No. 1703852.
|
[40] |
D.Y. Son,J.W. Lee,Y.J. Choi,et al.,Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,Nat. Energy,1(2016),No. 7,art. No. 16081.
|
[41] |
D.Q. Bi,C.Y. Yi,J.S. Luo,et al.,Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,Nat. Energy,1(2016),No. 10,art. No. 16142.
|
[42] |
X. Li,D. Bi,C. Yi,et al.,A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,Science,353(2016),No. 6294,p. 58.
|
[43] |
N.J. Jeon,J.H. Noh,W.S. Yang,et al.,Compositional engineering of perovskite materials for high-performance solar cells,Nature,517(2015),No. 7535,p. 476.
|
[44] |
J.X. Song,W.D. Hu,X.F. Wang,et al.,HC (NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells,J. Mater. Chem. A,4(2016),No. 21,p. 8435.
|
[45] |
C.H. Chiang,J.W. Lin,and C.G. Wu,One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module,J. Mater. Chem. A,4(2016),No. 35,p. 13525.
|
[46] |
L. Li,N. Liu,Z.Q. Xu,Q. Chen,X.D. Wang,and H.P. Zhou,Precise composition tailoring of mixed-cation hybrid perovskites for efficient solar cells by mixture design methods,ACS Nano,11(2017),No. 9,p. 8804.
|
[47] |
T.Q. Niu,J. Lu,R. Munir,et al.,Stable high-performance perovskite solar cells via grain boundary passivation,Adv. Mater.,30(2018),No. 16,art. No. 1706576.
|
[48] |
X.P. Zheng,B. Chen,J. Dai,et al.,Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations,Nat. Energy,2(2017),No. 7,art. No. 17102.
|
[49] |
Q. Chen,H. Zhou,T.B. Song,et al.,Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells,Nano Lett.,14(2014),No. 7,p. 4158.
|
[50] |
J.Z. Chen,J.Y. Seo,and N.G. Park,Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface,Adv. Energy Mater.,8(2018),No. 12,art. No. 1702714.
|
[51] |
H.C. Zai,C. Zhu,H.P. Xie,et al.,Congeneric incorporation of CsPbBr3 nanocrystals in a hybrid perovskite heterojunction for photovoltaic efficiency enhancement,ACS Energy Lett.,3(2017),No. 1,p. 30.
|
[52] |
L. Li,X. Jin,N. Liu,Q. Chen,W.B. Zhang,and H.P. Zhou,Efficient moisture-resistant perovskite solar cell with nanostructure featuring 3D amine motif,Solar RRL,2(2018),No. 9,art. No. 1800069.
|
[53] |
M.A. Green,A. Ho-Baillie,and H.J. Snaith,The emergence of perovskite solar cells,Nat. Photonics,8(2014),No. 7,p. 506.
|
[54] |
Q.X. Fu,X.L. Tang,B. Huang,T. Hu,L.C. Tan,L. Chen,and Y.W. Chen,Recent progress on the long-term stability of perovskite solar cells,Adv. Sci.,5(2018),No. 5,art. No. 1700387.
|
[55] |
W.D. Zhu,C.X. Bao,F.M. Li,et al.,A halide exchange engineering for CH3NH3PbI3-xBrx perovskite solar cells with high performance and stability,Nano Energy,19(2016),p. 17.
|
[56] |
Z. Li,M.J. Yang,J.S. Park,S.H. Wei,J.J. Berry,and K. Zhu,Stabilizing perovskite structures by tuning tolerance factor:formation of formamidinium and cesium lead iodide solid-state alloys,Chem. Mater.,28(2016),No. 1,p. 284.
|
[57] |
E. Smecca,Y. Numata,I. Deretzis,et al.,Stability of solution-processed MAPbI3 and FAPbI3 layers,Phys. Chem. Chem. Phys.,18(2016),No. 19,p. 13413.
|
[58] |
G.E. Eperon,S.D. Stranks,C. Menelaou,M.B. Johnston,L.M. Herz,and H.J. Snaith,Formamidinium lead trihalide:A broadly tunable perovskite for efficient planar heterojunction solar cells,Energy Environ. Sci.,7(2014),No. 3,p. 982.
|
[59] |
Y. Ogomi,A. Morita,S. Tsukamoto,et al.,CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm,J. Phys. Chem. Lett.,5(2014),No. 6,p. 1004.
|
[60] |
N.K. Noel,S.D. Stranks,A. Abate,et al.,Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,Energy Environ. Sci.,7(2014),No. 9,p. 3061.
|
[61] |
F. Hao,C.C. Stoumpos,D.H. Cao,R.P.H. Chang,and M.G. Kanatzidis,Lead-free solid-state organic-inorganic halide perovskite solar cells,Nat. Photonics,8(2014),No. 6,p. 489.
|
[62] |
T.M. Koh,T. Krishnamoorthy,N. Yantara,et al.,Formamidinium tin-based perovskite with low Eg for photovoltaic applications,J. Mater. Chem. A,3(2015),No. 29,p. 14996.
|
[63] |
W.Q. Liao,D.W. Zhao,Y. Yu,et al.,Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%,Adv. Mater.,28(2016),No. 42,p. 9333.
|
[64] |
W.J. Ke,C.C. Stoumpos,M.H. Zhu,et al.,Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite{en}FASnI3,Sci. Adv.,3(2017),No. 8,art. No. e1701293.
|
[65] |
W.J. Ke,P. Priyanka,S. Vegiraju,et al.,Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells,J. Am. Chem. Soc.,140(2018),No. 1,p. 388.
|
[66] |
Z.R. Zhao,F.D. Gu,Y.L. Li,et al.,Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%,Adv. Sci.,4(2017),No. 11,art. No. 1700204.
|
[67] |
T. Yokoyama,D.H. Cao,C.C. Stoumpos,et al.,Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process,J. Phys. Chem. Lett.,7(2016),No. 5,p. 776.
|
[68] |
J. Xi,Z.X. Wu,B. Jiao,et al.,Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells,Adv. Mater.,29(2017),No. 23,art. No. 1606964.
|
[69] |
K.P. Marshall,M. Walker,R.I. Walton,and R.A. Hatton,Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics,Nat. Energy,1(2016),No. 12,art. No. 16178.
|
[70] |
C.X. Ran,J. Xi,W.Y. Gao,et al.,Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,ACS Energy Lett.,3(2018),No. 3,p. 713.
|
[71] |
I. Chung,B. Lee,J.Q. He,R.P.H. Chang,and M.G. Kanatzidis,All-solid-state dye-sensitized solar cells with high efficiency,Nature,485(2012),No. 7399,p. 486.
|
[72] |
M.H. Kumar,S. Dharani,W.L. Leong,et al.,Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,Adv. Mater.,26(2014),No. 41,p. 7122.
|
[73] |
D. Sabba,H.K. Mulmudi,R.R. Prabhakar,et al.,Impact of anionic Br-substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells,J. Phys. Chem. C,119(2015),No. 4,p. 1763.
|
[74] |
S. Gupta,T. Bendikov,G. Hodes,and D. Cahen,CsSnBr3,a lead-free halide perovskite for long-term solar cell application:Insights on SnF2 addition,ACS Energy Lett.,1(2016),No. 5,p. 1028.
|
[75] |
D. Moghe,L.L. Wang,C.J. Traverse,et al.,All vapor-deposited lead-free doped CsSnBr3 planar solar cells,Nano Energy,28(2016),p. 469.
|
[76] |
N. Wang,Y.Y. Zhou,M.G. Ju,et al.,Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films,Adv. Energy Mater.,6(2016),No. 24,art. No. 1601130.
|
[77] |
P. Xu,S.Y. Chen,H.J. Xiang,X.G. Gong,and S.H. Wei,Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnl3,Chem. Mater.,26(2014),No. 20,p. 6068.
|
[78] |
W.Z. Li,J.W. Li,J.L. Li,J.D. Fan,Y.H. Mai,and L.D. Wang,Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K,J. Mater. Chem. A,4(2016),No. 43,p. 17104.
|
[79] |
L.Z. Zhu,B. Yuh,S. Schoen,et al.,Solvent-moleculemediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells,Nanoscale,8(2016),No. 14,p. 7621.
|
[80] |
F. Zuo,S.T. Williams,P.W. Liang,C.C. Chueh,C.Y. Liao,and A.K.Y. Jen,Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells,Adv. Mater.,26(2014),No. 37,p. 6454.
|
[81] |
C. Liu,J. Fan,H. Li,C. Zhang,and Y. Mai,Highly efficient perovskite solar cells with substantial reduction of lead content,Sci. Rep.,6(2016),art. No. 35705.
|
[82] |
J.D. Fan,C. Liu,H.L. Li,C.L. Zhang,W.Z. Li,and Y.H. Mai,Molecular Self-assembly fabrication and carrier dynamics of stable and efficient CH3NH3Pb(1-x) SnxI3 perovskite solar cells,ChemSusChem,10(2017),No. 19,p. 3839.
|
[83] |
C. Liu,W.Z. Li,H.L. Li,C.L. Zhang,J.D. Fan,and Y.H. Mai,C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency,Nanoscale,9(2017),No. 37,p. 13967.
|
[84] |
E. Mosconi,P. Umari,and F. De Angelis,Electronic and optical properties of mixed Sn-Pb organohalide perovskites:A first principles investigation,J. Mater. Chem. A,3(2015),No. 17,p. 9208.
|
[85] |
F. Hao,C.C. Stoumpos,R.P.H. Chang,and M.G. Kanatzidis,Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells,J. Am. Chem. Soc.,136(2014),No. 22,p. 8094.
|
[86] |
Y.L. Li,W.H. Sun,W.B. Yan,et al.,50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%,Adv. Energy Mater.,6(2016),No. 24,art. No. 1601353.
|
[87] |
X.B. Xu,C.C. Chueh,Z.B. Yang,et al.,Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells,Nano Energy,34(2017),p. 392.
|
[88] |
G. Kapil,T.S. Ripolles,K. Hamada,et al.,Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure,Nano Lett.,18(2018),No. 6,p. 3600.
|
[89] |
S. Lee and D.W. Kang,Highly efficient and stable Sn-rich perovskite solar cells by introducing bromine,ACS Appl. Mater. Interfaces,9(2017),No. 27,p. 22432.
|
[90] |
W.Q. Liao,D.W. Zhao,Y. Yu,et al.,Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide,J. Am. Chem. Soc.,138(2016),No. 38,p. 12360.
|
[91] |
D.W. Zhao,Y. Yu,C.L. Wang,et al.,Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells,Nat. Energy,2(2017),No. 4,art. No. 17018.
|
[92] |
N.J. Jeon,H. Na,E.H. Jung,et al.,A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,Nat. Energy,3(2018),No. 8,p. 682.
|
[93] |
D.Y. Luo,W.Q. Yang,Z.P. Wang,et al.,Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,Science,360(2018),No. 6396,p. 1442.
|
[94] |
M.M. Tavakoli,S.M. Zakeeruddin,M. Grätzel,and Z.Y. Fan,Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique,Adv. Mater.,30(2018),No. 11,art. No. 1705998.
|
[95] |
C.M. Tsai,H.P. Wu,S.T. Chang,et al.,Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode,ACS Energy Lett.,1(2016),No. 6,p. 1086.
|
[96] |
T. Krishnamoorthy,H. Ding,C. Yan,et al.,Lead-free germanium iodide perovskite materials for photovoltaic applications,J. Mater. Chem. A,3(2015),No. 47,p. 23829.
|
[97] |
I. Kopacic,B. Friesenbichler,S.F. Hoefler,et al.,Enhanced performance of germanium halide perovskite solar cells through compositional engineering,ACS Appl. Energy Mater.,1(2018),No. 2,p. 343.
|
[98] |
K. Wang,Z.Q. Liang,X.Q. Wang,and X.D. Cui,Lead replacement in CH3NH3PbI3 perovskites,Adv. Electron. Mater.,1(2015),No. 10,art. No. 1500089.
|
[99] |
M. Pazoki,T.J. Jacobsson,A. Hagfeldt,G. Boschloo,and T. Edvinsson,Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites:Replacement of lead with alkaline-earth metals,Phys. Rev. B,93(2016),No. 14,art. No. 144105.
|
[100] |
T.J. Jacobsson,M. Pazoki,A. Hagfeldt,and T. Edvinsson,Goldschmidt's rules and strontium replacement in lead halogen perovskite solar cells:Theory and preliminary experiments on CH3NH3SrI3,J. Phys. Chem. C,119(2015),No. 46,p. 25673.
|
[101] |
M.C. Wu,W.C. Chen,S.H. Chan,and W.F. Su,The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,Appl. Surf. Sci.,429(2018),p. 9.
|
[102] |
M.C. Wu,T.H. Lin,S.H. Chan,and W.F. Su,Improved efficiency of perovskite photovoltaics based on Ca-doped methylammonium lead halide,J. Taiwan Inst. Chem. Eng.,80(2017),p. 695.
|
[103] |
H.B. Zhang,M.H. Shang,X.Y. Zheng,et al.,Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,Electrochim. Acta,254(2017),p. 165.
|
[104] |
S.H. Chan,M.C. Wu,K.M. Lee,W.C. Chen,T.H. Lin,and W.F. Su,Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,J. Mater. Chem. A,5(2017),No. 34,p. 18044.
|
[105] |
X.X. Shai,L.J. Zuo,P.Y. Sun,et al.,Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite,Nano Energy,36(2017),p. 213.
|
[106] |
C.F.J. Lau,M. Zhang,X.F. Deng,et al.,Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells,ACS Energy Lett.,2(2017),No. 10,p. 2319.
|
[107] |
D. Perez-Del-Rey,D. Forgács,E.M. Hutter,et al.,Strontium insertion in methylammonium lead iodide:Long charge carrier lifetime and high fill-factor solar cells,Adv. Mater.,28(2016),No. 44,p. 9839.
|
[108] |
H. Zhang,H. Wang,S.T. Williams,et al.,SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells,Adv. Mater.,29(2017),No. 15,art. No. 1606608.
|
[109] |
P.P. Boix,S. Agarwala,T.M. Koh,N. Mathews,and S.G. Mhaisalkar,Perovskite solar cells:Beyond methylammonium lead iodide,J. Phys. Chem. Lett.,6(2015),No. 5,p. 898.
|
[110] |
Z.H. Nie,J. Yin,H.W. Zhou,et al.,Layered and Pb-free organic-inorganic perovskite materials for ultraviolet photoresponse:(010)-oriented (CH3NH3)2MnCl4 thin film,ACS Appl. Mater. Interfaces,8(2016),No. 41,p. 28187.
|
[111] |
X.P. Cui,K.J. Jiang,J.H. Huang,et al.,Cupric bromide hybrid perovskite heterojunction solar cells,Synth. Met.,209(2015),p. 247.
|
[112] |
D. Cortecchia,H.A. Dewi,J. Yin,et al.,Lead-free MA2CuClxBr4-x hybrid perovskites,Inorg. Chem.,55(2016),No. 3,p. 1044.
|
[113] |
X.L. Li,B.C. Li,J.H. Chang,et al.,(C6H5CH2NH3)2CuBr4:A lead-free,highly stable two-dimensional perovskite for solar cell applications,ACS Appl. Energy Mater.,1(2018),No. 6,p. 2709.
|
[114] |
X.X. Liu,T.J. Huang,L.Y. Zhang,et al.,Highly stable,new,organic-inorganic perovskite (CH3NH3)2PdBr4:Synthesis,structure,and physical properties,Chemistry,24(2018),No. 19,p. 4991.
|
[115] |
L.A. Frolova,D.V. Anokhin,K.L. Gerasimov,N.N. Dremova,and P.A. Troshin,Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,J. Phys. Chem. Lett.,7(2016),No. 21,p. 4353.
|
[116] |
M. Jahandar,J.H. Heo,C.E. Song,et al.,Highly efficient metal halide substituted CH3NH3I (PbI2)1-x(CuBr2)x planar perovskite solar cells,Nano Energy,27(2016),p. 330.
|
[117] |
J.J. Jin,H. Li,C. Chen,et al.,Enhanced performance of perovskite solar cells with zinc chloride additives,ACS Appl. Mater. Interfaces,9(2017),No. 49,p. 42875.
|
[118] |
M.T. Klug,A. Osherov,A.A. Haghighirad,et al.,Tailoring metal halide perovskites through metal substitution:Influence on photovoltaic and material properties,Energy Environ. Sci.,10(2017),No. 1,p. 236.
|
[119] |
M. Li,Z.K. Wang,M.P. Zhuo,et al.,Pb-Sn-Cu ternary organometallic halide perovskite solar cells,Adv. Mater.,30(2018),No. 20,p. art. No. 1800258.
|
[120] |
S. Niki,M. Contreras,I. Repins,et al.,CIGS absorbers and processes,Prog. Photovolt:Res. Appl.,18(2010),No. 6,p. 453.
|
[121] |
S.Y. Chen,A. Walsh,X.G. Gong,and S.H. Wei,Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers,Adv. Mater.,25(2013),No. 11,p. 1522.
|
[122] |
H.P. Zhou,W.C. Hsu,H.S. Duan,et al.,CZTS nanocrystals:A promising approach for next generation thin film photovoltaics,Energy Environ. Sci.,6(2013),No. 10,p. 2822.
|
[123] |
J. Zhang,M.H. Shang,P. Wang,et al.,n-Type doping and energy states tuning in CH3NH3Pb1-xSb2x/3I3 perovskite solar cells,ACS Energy Lett.,1(2016),No. 3,p. 535.
|
[124] |
T. Oku,Y. Ohishi,and A. Suzuki,Effects of antimony addition to perovskite-type CH3NH3PbI3 photovoltaic devices,Chem. Lett.,45(2016),No. 2,p. 134.
|
[125] |
S. Chatterjee,U. Dasgupta,and A.J. Pal,Sequentially deposited antimony-doped CH3NH3PbI3 films in inverted planar heterojunction solar cells with a high open-circuit voltage,J. Phys. Chem. C,121(2017),No. 37,p. 20177.
|
[126] |
G.E. Eperon,G.M. Paterno,R.J. Sutton,et al.,Inorganic caesium lead iodide perovskite solar cells,J. Mater. Chem. A,3(2015),No. 39,p. 19688.
|
[127] |
Y.Q. Hu,F. Bai,X.B. Liu,et al.,Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells,ACS Energy Lett.,2(2017),No. 10,p. 2219.
|
[128] |
Z.K. Wang,M. Li,Y.G. Yang,et al.,High efficiency Pb-In binary metal perovskite solar cells,Adv. Mater.,28(2016),No. 31,p. 6695.
|
[129] |
A. Singh,K.M. Boopathi,A. Mohapatra,Y.F. Chen,G. Li,and C.W. Chu,Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9,ACS Appl. Mater. Interfaces,10(2018),No. 3,p. 2566.
|
[130] |
P.C. Harikesh,H.K. Mulmudi,B. Ghosh,et al.,Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics,Chem. Mater.,28(2016),No. 20,p. 7496.
|
[131] |
J.C. Hebig,I. Kühn,J. Flohre,and T. Kirchartz,Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications,ACS Energy Lett.,1(2016),No. 1,p. 309.
|
[132] |
M. Abulikemu,S. Ould-Chikh,X.H. Miao,et al.,Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9,J. Mater. Chem. A,4(2016),No. 32,p. 12504.
|
[133] |
M.B. Johansson,H.M. Zhu,and E.M.J. Johansson,Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells,J. Phys. Chem. Lett.,7(2016),No. 17,p. 3467.
|
[134] |
C. McDonald,C.S. Ni,V.Švrček,et al.,Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals,Nanoscale,9(2017),No. 47,p. 18759.
|
[135] |
T. Singh,A. Kulkarni,M. Ikegami,and T. Miyasaka,Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications,ACS Appl. Mater. Interfaces,8(2016),No. 23,p. 14542.
|
[136] |
Y. Kim,Z.Y. Yang,A. Jain,et al.,Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics,Angew. Chem. Int. Ed.,128(2016),No. 33,p. 9586.
|
[137] |
B.W. Park,B. Philippe,X.L. Zhang,H. Rensmo,G. Boschloo,and E.M.J. Johansson,Bismuth based hybrid perovskites A3Bi2I9(A:methylammonium or cesium) for solar cell application,Adv. Mater.,27(2016),No. 43,p. 6806.
|
[138] |
C.X. Ran,Z.X. Wu,J. Xi,et al.,Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V,J. Phys. Chem. Lett.,8(2017),No. 2,p. 394.
|
[139] |
S.S. Shin,J.P.C. Baena,R.C. Kurchin,et al.,Solvent-engineering method to deposit compact bismuth-based thin films:Mechanism and application to photovoltaics,Chem. Mater.,30(2018),No. 2,p. 336.
|
[140] |
A.H. Slavney,T. Hu,A.M. Lindenberg,and H.I. Karunadasa,A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications,J. Am. Chem. Soc.,138(2016),No. 7,p. 2138.
|
[141] |
E.T. McClure,M.R. Ball,W. Windl,and P.M. Woodward,Cs2AgBiX6(X=Br,Cl):New visible light absorbing,lead-free halide perovskite semiconductors,Chem. Mater.,28(2016),No. 5,p. 1348.
|
[142] |
G. Volonakis,M.R. Filip,A.A. Haghighirad,et al.,Lead-free halide double perovskites via heterovalent substitution of noble metals,J. Phys. Chem. Lett.,7(2016),No. 7,p. 1254.
|
[143] |
F.X. Wei,Z.Y. Deng,S.J. Sun,et al.,The synthesis,structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6(MA=methylammonium),Mater. Horiz.,3(2016),No. 4,p. 328.
|
[144] |
F.X. Wei,Z.Y. Deng,S.J. Sun,et al.,Synthesis and properties of a lead-free hybrid double perovskite:(CH3NH3)2AgBiBr6,Chem. Mater.,29(2017),No. 3,p. 1089.
|
[145] |
E. Greul,M.L. Petrus,A. Binek,P. Docampo,and T. Bein,Highly stable,phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications,J. Mater. Chem. A,5(2017),No. 37,p. 19972.
|
[146] |
W.H. Ning,F. Wang,B. Wu,et al.,Long electron-hole diffusion length in high-quality lead-free double perovskite films,Adv. Mater.,30(2018),No. 20,art. No. 1706246.
|
[147] |
C.C. Wu,Q.H. Zhang,Y. Liu,et al.,The dawn of lead-free perovskite solar cell:Highly stable double perovskite Cs2AgBiBr6 film,Adv. Sci.,5(2018),No. 3,art. No. 1700759.
|
[148] |
W.Y. Gao,C.X. Ran,J. Xi,et al.,High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency,ChemPhysChem,19(2018),No. 14,p. 1696.
|
[149] |
G. Volonakis,A.A. Haghighirad,R.L. Milot,et al.,Cs2InAgCl6:A new lead-free halide double perovskite with direct band gap,J. Phys. Chem. Lett.,8(2017),No. 4,p. 772.
|