留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 4
Apr.  2019
数据统计

分享

计量
  • 文章访问数:  602
  • HTML全文浏览量:  98
  • PDF下载量:  10
  • 被引次数: 0
Ao Li, Xin-peng Zhao, Hai-you Huang, Yuan Ma, Lei Gao, Yan-jing Su, and Ping Qian, Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 507-515. https://doi.org/10.1007/s12613-019-1758-0
Cite this article as:
Ao Li, Xin-peng Zhao, Hai-you Huang, Yuan Ma, Lei Gao, Yan-jing Su, and Ping Qian, Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 507-515. https://doi.org/10.1007/s12613-019-1758-0
引用本文 PDF XML SpringerLink
研究论文

Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping

  • 通讯作者:

    Hai-you Huang    E-mail: huanghy@mater.ustb.edu.cn

  • Brittleness is a dominant issue that restricts potential applications of Mg2Si intermetallic compounds (IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg2Si-Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.
  • Research Article

    Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping

    + Author Affiliations
    • Brittleness is a dominant issue that restricts potential applications of Mg2Si intermetallic compounds (IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg2Si-Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.
    • loading
    • [1]
      D.W. Zhang, Z. Li, and H.B. Huang, New Mg2Si based alloy for automobile engine cylinder liner, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 26(2011), No. 4, p. 797.
      [2]
      B.L. Mordike and T. Ebert, Magnesium:Properties-applications-potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.
      [3]
      M. Riffel and J. Schilz, Mechanical alloying of Mg2Si, Scripta Metall. Mater., 32(1995), No. 12, p. 1951.
      [4]
      M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Bulk crystal growth of Mg2Si by the vertical Bridgman method, Thin Solid Films, 461(2004), No. 1, p. 86.
      [5]
      H. Tatsuoka, N. Takagi, S. Okaya, Y. Sato, T. Inaba, T. Ohishi, A. Yamamoto, T. Matsuyama, and H. Kuwabara, Microstructures of semiconducting silicide layers grown by novel growth techniques, Thin Solid Films, 461(2004), No. 1, p. 57.
      [6]
      K.K.A. Kumar, A. Viswanath, U.T.S. Pillai, B.C. Pai, and M. Chakraborty, Changes in solidification morphology of Mg-Si alloys by Ca additions, Trans. Indian Inst. Met., 65(2012), No. 6, p. 695.
      [7]
      S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M.S. Toprak, M. Fabrizio, and S. Barison, Synthesis and characterization of Al-doped Mg2Si thermoelectric materials, J. Electron. Mater., 42(2013), No. 7, p. 1956.
      [8]
      G.H. Li, H.S. Gill, and R.A. Varin, Magnesium silicide intermetallic alloys, Metall. Trans. A, 24(1993), No. 11, p. 2383.
      [9]
      Y.L. Yue, Y.S. Gong, H.T. Wu, C.B. Wang, and L.M. Zhang, Fabrication and mechanical properties of TiC/TiAl composites, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 19(2004), No. 1, p. 1.
      [10]
      X.H. Qu, B.Y. Huang, and C.M. Lei, Room temperature brittleness and improvement of TiAl orderd alloy, Rare Met., 17(1993), No. 4, p. 295.
      [11]
      S.Q. Chen, X.H. Qu, C.M. Lei, and B.Y. Huang, Room temperature mechanical properties of ordered TiAl+La alloys, Acta Metall. Sin., 30(1994), No. 1, p. 20.
      [12]
      K. Kaur and R. Kumar, Electronic and thermoelectric properties of Al doped Mg2Si material:DFT study, Mater. Today: Proc., 3(2016), No. 6, p. 1785.
      [13]
      N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada, First-principles study on structural and thermoelectric properties of Al-and Sb-doped Mg2Si, J. Electron. Mater., 44(2015), No. 6, p. 1656.
      [14]
      W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133.
      [15]
      G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 48(1993), No. 17, p. 13115.
      [16]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169.
      [17]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.
      [18]
      J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Erratum:Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 48(1993), No. 7, p. 4978.
      [19]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.
      [20]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188.
      [21]
      J. Tani and H. Kido, First-principles and experimental studies of impurity doping into Mg2Si, Intermetallics, 16(2008), No. 3, p. 418.
      [22]
      W. Xiong, X.Y. Qin, M.G. Kong, and C. Li, Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hot-pressing, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 987.
      [23]
      C. Li, Y.P. Wu, H. Li, Y.Y. Wu, and X.F. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys, Mater. Sci. Eng. A, 528(2010), No. 2, p. 573.
      [24]
      A. Viat, G. Guillonneau, S. Fouvry, G. Kermouche, S. Sao Joao, J. Wehrs, J. Michler, and J.F. Henne, Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures, Wear, 392-393(2017), p. 60.
      [25]
      S.F. Pugh, XCⅡ. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag. J. Sci., 45(1954), No. 367, p. 823.
      [26]
      G.V. Sin'Ko and N. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.:Condens. Matter, 14(2002), No. 29, p. 6989.
      [27]
      W. Voigt, Lehrbuch der Kristallphysik, Springer, Wiesbaden, 1966.
      [28]
      A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech., 9(1929), p. 49.
      [29]
      R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65(1952), No. 5, p. 349.
      [30]
      R. Hill, Elastic properties of reinforced solids:Some theoretical principles, J. Mech. Phys. Solids, 11(1963), No. 5, p. 357.
      [31]
      R.D. Schmidt, E.D. Case, J. Giles, J.E. Ni, and T.P. Hogan, Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials, J. Electron. Mater., 41(2012), No. 6, p. 1210.

    Catalog


    • /

      返回文章
      返回