留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 4
Apr.  2019
数据统计

分享

计量
  • 文章访问数:  593
  • HTML全文浏览量:  113
  • PDF下载量:  11
  • 被引次数: 0
Ying Hu, Qiu-bao Ou-yang, Lei Yao, Sheng Chen,  and Lan-ting Zhang, A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 523-529. https://doi.org/10.1007/s12613-019-1760-6
Cite this article as:
Ying Hu, Qiu-bao Ou-yang, Lei Yao, Sheng Chen,  and Lan-ting Zhang, A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 523-529. https://doi.org/10.1007/s12613-019-1760-6
引用本文 PDF XML SpringerLink
研究论文

A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite

  • 通讯作者:

    Lan-ting Zhang    E-mail: lantingzh@sjtu.edu.cn

  • We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite (SiCp/2014 Al). Finite element method (FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction (EBSD) and selected-area electron diffraction (SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy (STEM) revealed fine and recrystallized grains adjacent to the SiC particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.
  • Research Article

    A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite

    + Author Affiliations
    • We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite (SiCp/2014 Al). Finite element method (FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction (EBSD) and selected-area electron diffraction (SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy (STEM) revealed fine and recrystallized grains adjacent to the SiC particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.
    • loading
    • [1]
      S.S. Li, Y.S. Su, Q.B. Ouyang, and D. Zhang, In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy, Mater. Lett., 167(2016), p. 118.
      [2]
      J.M. Root, D.P. Field, and T.W. Nelson, Crystallographic texture in the friction-stir-welded metal matrix composite Al6061 with 10 vol pct Al2O3, Metall. Mater. Trans. A, 40(2009), No. 9, p. 2109.
      [3]
      S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana, and B.S. Chun, Effect of clustering on the mechanical properties of SiCparticulate-reinforced aluminum alloy 2024 metal matrix composites, Mater. Sci. Eng., A, 347(2003), No. 1-2, p. 198.
      [4]
      Z. Xue, Y. Huang, and M. Li, Particle size effect in metallic materials:A study by the theory of mechanism-based strain gradient plasticity, Acta Mater., 50(2002), No. 1, p. 149.
      [5]
      D. Mandal and S. Viswanathan, Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite, Mater. Charact., 86(2013), p. 21.
      [6]
      D. Mandal and S. Viswanathan, Effect of heat treatment on microstructure and interface of SiCparticle reinforced 2124 Al matrix composite, Mater. Charact., 85(2013), p. 73.
      [7]
      G. Liu, G.J. Zhang, R.H. Wang, W. Hu, J. Sun, and K.H. Chen, Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys, Acta Mater., 55(2007), No. 1, p. 273.
      [8]
      R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, The absence of thermal expansion mismatch strengthening in nanostructured metal-matrix composites, Scripta Mater., 61(2009), No. 11, p. 1052.
      [9]
      J.S. Robinson and W. Redington, The influence of alloy composition on residual stresses in heat treated aluminium alloys, Mater. Charact., 105(2015), p. 47.
      [10]
      J.Y. Song, Q. Guo, Q.B. Ouyang, Y.S. Su, J. Zhang, E.J. Lavernia, J.M. Schoenung, and D. Zhang, Influence of interfaces on the mechanical behavior of SiCparticulate-reinforced Al-Zn-Mg-Cu composites, Mater. Sci. Eng. A, 644(2015), p. 79.
      [11]
      Z.Z. Chen, Z.Q. Tan, G. Ji, G.L. Fan, D. Schryvers, Q.B. Ouyang, and Z.Q. Li, Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites, Adv. Eng. Mater., 17(2015), No. 7, p. 1077.
      [12]
      S.Y. Wang, Q. Tang, D.J. Li, J.X. Zou, X.Q. Zeng, Q.B. Ouyang, and W.J. Ding, The hot workability of SiCp/2024 Al composite by stir casting, Mater. Manuf. Processes, 30(2015), No. 5, p. 624.
      [13]
      A. Fathy, D. Ibrahim, O. Elkady, and M.Hassan, Evaluation of mechanical properties of 1050-Al reinforced with SiCparticles via accumulative roll bonding process, J. Compos. Mater., 53(2019), No. 2, p. 209.
      [14]
      N.E. Mahallawy, A. Fathy, and M. Hassan, Evaluation of mechanical properties and microstructure of Al/Al-12% Si multilayer via warm accumulative roll bonding process, J. Compos. Mater., 2017. https://doi.org/10.1177/0021998317692141
      [15]
      N.E. Mahallawy, A. Fathy, W. Abdelaziem, and M. Hassan, Microstructure evolution and mechanical properties of Al/Al-12% Si multilayer processed by accumulative roll bonding (ARB), Mater. Sci. Eng., A, 647(2015), p. 127.
      [16]
      A. Fathy, O. Elkady, and A. Abu-Oqail, Synthesis and characterization of Cu-ZrO2 nanocomposite produced by thermochemical process, J. Alloys Compd., 719(2017), p. 411.
      [17]
      A. Fathy, Investigation on microstructure and properties of Cu-ZrO2 nanocomposites synthesized by in situ processing, Mater. Lett., 213(2018), p. 95.
      [18]
      A. Fathy, A. Sadoun, and M. Abdelhameed, Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al-SiC composites, Int. J. Adv. Manuf. Technol., 73(2014), No. 5-8, p. 1049.
      [19]
      O. El-Kady and A. Fathy, Effect of SiCparticle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des., 54(2014), p. 348.
      [20]
      A. Wagih, A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation, J. Alloys Compd., 752(2018), p. 137.
      [21]
      A. Wagih and A. Fathy, Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles, J. Mater. Sci., 53(2018), No. 16, p. 11393.
      [22]
      A. Fathy and O. El-Kady, Thermal expansion and thermal conductivity characteristics of Cu-Al2O3 nanocomposites, Mater. Des., 46(2013), p. 355.
      [23]
      J. Zhang, Q.B. Ouyang, Q. Guo, Z.Q. Li, G.L. Fan, Y.S Su, L. Jiang, E.J. Lavernia, J.M. Schoenung, and D. Zhang, 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites, Compos. Sci. Technol., 123(2016), p. 1.
      [24]
      H. Jiang, Z.G. Fan, and C.Y. Xie, 3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 409.
      [25]
      H. Jiang, Z.G. Fan, and C.Y. Xie, Finite element analysis of temperature rise in CP-Ti during equal channel angular extrusion, Mater. Sci. Eng. A, 513-514(2009), p. 109.
      [26]
      V. Ocelík, J.A. Vreeling, and J.T.M. De Hosson, EBSP study of reaction zone in SiC/Al metal matrix composite prepared by laser melt injection, J. Mater. Sci., 36(2001), No. 20, p. 4845.
      [27]
      M. Kamaya, Assessment of local deformation using EBSD:Quantification of local damage at grain boundaries, Mater. Charact., 66(2012), p. 56.
      [28]
      J. Guo, S. Amira, P. Gougeon, and X.G. Chen, Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite, Mater. Charact., 62(2011), No. 9, p. 865.
      [29]
      Z.P. Luo, Y.G. Song, and S.Q. Zhang, A TEM study of the microstructure of SiCp/Al composite prepared by pressure less infiltration method, Scripta Mater., 45(2001), No. 10, p. 1183.
      [30]
      W.L Zhang, J.X. Wang, F. Yang, Z.Q. Sun, and M.Y. Gu, Recrystallization kinetics of cold-rolled squeeze-cast Al/SiC/15w composites, J. Compos. Mater., 40(2006), No. 12, p. 1117.
      [31]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 2004, p. 451.

    Catalog


    • /

      返回文章
      返回