留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 5
May  2019
数据统计

分享

计量
  • 文章访问数:  504
  • HTML全文浏览量:  91
  • PDF下载量:  21
  • 被引次数: 0
C. D. Gómez-Esparza, R. Peréz-Bustamante, J. M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J. M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp. 634-641. https://doi.org/10.1007/s12613-019-1771-3
Cite this article as:
C. D. Gómez-Esparza, R. Peréz-Bustamante, J. M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J. M. Olivares-Ramírez, and A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp. 634-641. https://doi.org/10.1007/s12613-019-1771-3
引用本文 PDF XML SpringerLink
研究论文

Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy

  • 通讯作者:

    C. D. Gómez-Esparza    E-mail: cynthia.gomez@cimav.edu.mx

  • An AlCoCuCrFeNiTi high-entropy alloy (HEA) was prepared by mechanical alloying and sintering to study the effect of Ti addition to the widely studied AlCoCuCrFeNi system. The structural and microstructural characteristics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of four micrometric phases was detected:a Cu-rich phase with a face-centered cubic (fcc) structure, a body-centered cubic (bcc) solid solution with Cu-rich plate-like precipitates (fcc), an ordered bcc phase, and a tetragonal structure. The XRD patterns corroborate the presence of a mixture of bcc-, fcc-, and tetragonal-structured phases. The Vickers hardness of the alloy under study was more than twice that of the AlCoCuCrFeNi alloy. Nanoindentation tests were performed to evaluate the mechanical response of the individual phases to elucidate the relationship between chemical composition, crystal structure, and mechanical performance of the multiphase microstructure of the AlCoCuCrFeNiTi HEA.
  • Research Article

    Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy

    + Author Affiliations
    • An AlCoCuCrFeNiTi high-entropy alloy (HEA) was prepared by mechanical alloying and sintering to study the effect of Ti addition to the widely studied AlCoCuCrFeNi system. The structural and microstructural characteristics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of four micrometric phases was detected:a Cu-rich phase with a face-centered cubic (fcc) structure, a body-centered cubic (bcc) solid solution with Cu-rich plate-like precipitates (fcc), an ordered bcc phase, and a tetragonal structure. The XRD patterns corroborate the presence of a mixture of bcc-, fcc-, and tetragonal-structured phases. The Vickers hardness of the alloy under study was more than twice that of the AlCoCuCrFeNi alloy. Nanoindentation tests were performed to evaluate the mechanical response of the individual phases to elucidate the relationship between chemical composition, crystal structure, and mechanical performance of the multiphase microstructure of the AlCoCuCrFeNiTi HEA.
    • loading
    • [1]
      J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35(2004), p. 2533.
      [2]
      S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5818.
      [3]
      R. Sriharitha, B.S. Murty, and R.S. Kottada, Phase formation in mechanically alloyed AlxCoCrCuFeNi (x=0.45, 1, 2.5, 5 mol) high entropy alloys, Intermetallics, 32(2013), p. 119.
      [4]
      N.T.B.N. Koundinya, C.S. Babu, K. Sivaprasad, P. Susila, N.K. Babu, and J. Baburao, Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying, J. Mater. Eng. Perform., 22(2013), No. 10, p. 3077.
      [5]
      Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, and J.W. Qiao, Optimizing mechanical properties of AlCoCrFeNiTix high-entropy alloys by tailoring microstructures, Acta Metall. Sin.-Engl., 26(2013), No. 3, p. 277.
      [6]
      P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, G. Li, and R.P. Liu, Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system, Mater. Sci. Eng. A, 737(2018), No. 8, p. 198.
      [7]
      W.Y. Yan, C.L. Pun, and G.P. Simon, Conditions of applying Oliver-Pharr method to the nanoindentation of particles in composites, Compos. Sci. Technol., 72(2012), No. 10, p. 1147.
      [8]
      C.S. Babu, N.T.B.N. Koundinya, K. Sivaprasad, and J.A. Szpunar, Thermal analysis and nanoindentaion studies on nanocrystalline AlCrNiFeZn high entropy alloy, Procedia Mater. Sci., 6(2014), p. 641.
      [9]
      V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter, Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys, Mater. Des., 115(2017), p. 479.
      [10]
      C.M. Lin and H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19(2011), No. 3, p. 288.
      [11]
      Y.L. Chen, Y.H. Hu, C.W. Tsai, J.W. Yeh, S.K. Chen, and S.Y. Chang, Structural evolution during mechanical milling and subsequent annealing of Cu-Ni-Al-Co-Cr-Fe-Ti alloys, Mater. Chem. Phys., 118(2009), No. 2-3, p. 354.
      [12]
      Z.G. Zhu, K.H. Ma, Q. Wang, and C.H. Shek, Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys, Intermetallics, 79(2016), p. 1.
      [13]
      C.D. Gómez-Esparza, K. Campos-Venegas, O. Solis-Canto, J.M. Alvarado-Orozco, J. Muñoz-Saldaña, J.M. Herrera-Ramírez, and R. Martínez-Sánchez, Nanohardness and microstructure of NiCoAlFeCu and NiCoAlFeCuCr alloys produced by mechanical alloying, Microsc. Microanal., 20(2014), No. S3, p. 2106.
      [14]
      T.T. Shun and Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd., 478(2009), No. 1-2, p. 269.
      [15]
      B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A, 498(2008), No. 1-2, p. 482.
      [16]
      H.F. Sheng, M. Gong, and L.M. Peng, Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Mater. Sci. Eng. A, 567(2013), p. 14.
      [17]
      Y. Ma, B.B. Jiang, C.L. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, and L.X. Sun, The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys, Metals, 7(2017), No. 2, p. 57.
      [18]
      M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and C.P. Tu, Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys, Mater. Trans., 47(2006), No. 5, p. 1395.
      [19]
      K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang. S.W. Lee, and K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd., 495(2010), No. 1, p. 33.
      [20]
      K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng. A, 508(2009), No. 1-2, p. 214.
      [21]
      P. Malinovskis, S. Fritze, L. Riekehr, L. von Fieandt, J. Cedervall, D. Rehnlund, L. Nyhol, E. Lewin, and U. Jansson, Synthesis and characterization of multicomponent (CrNbTaTiW) C films for increased hardness and corrosion resistance, Mater. Des., 149(2018), p. 51.
      [22]
      C.D. Gómez-Esparza, J. Camarillo-Cisneros, I. Estrada-Guel, J.G. Cabañas-Moreno, J.M. Herrera-Ramírez, and R. Martínez-Sánchez, Effect of Cr, Mo and Ti on the microstructure and Vickers hardness of multi-component systems, J. Alloys Compd., 615(2014), No. Supplement 1, p. S638.
      [23]
      Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, and G.L. Chen, Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0.5 solid-solution alloy, J. Alloys Compd., 466(2008), No. 1-2, p. 201.
      [24]
      S. Guo, C. Ng, and C.T. Liu, Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys, J. Alloys Compd., 557(2013), p. 77.
      [25]
      G. Arzpeyma, A.E. Gheribi, and M. Medraj, On the prediction of Gibbs free energy of mixing of binary liquid alloys, J. Chem. Thermodyn., 57(2013), p. 82.
      [26]
      S. Guo, Q. Hu, C. Ng, and C.T. Liu, More than entropy in high-entropy alloys:Forming solid solutions or amorphous phase, Intermetallics, 41(2013), p. 96.
      [27]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.
      [28]
      C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36(2005), p. 1263.

    Catalog


    • /

      返回文章
      返回