Cite this article as: |
Yun-long He, Rui-dong Xu, Shi-wei He, Han-sen Chen, Kuo Li, Yun Zhu, and Qing-feng Shen, Alkaline pressure oxidative leaching of bismuth-rich and arsenic-rich lead anode slime, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 689-700. https://doi.org/10.1007/s12613-019-1776-y |
Rui-dong Xu E-mail: rdxupaper@aliyun.com
[1] |
T. Havuz, B. Dönmez, and C. Çelik, Optimization of removal of lead from bearing-lead anode slime, J. Ind. Eng. Chem.,16(2010), No. 3, p. 355.
|
[2] |
Y.H. Li, Z.H. Liu, Q.H. Li, Z.W. Zhao, Z.Y. Liu, and L. Zeng, Removal of arsenic from Waelz zinc oxide using a mixed NaOH-Na2S leach, Hydrometallurgy, 108(2011), No. 3-4, p. 165.
|
[3] |
M.A. Fernández, M. Segarra, and F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from copper refining, Hydrometallurgy, 41(1996), No. 2-3, p. 255.
|
[4] |
J.W. Han, C. Liang, W. Liu, W.Q. Qin, F. Jiao, and W.H. Li, Pretreatment of tin anode slime using alkaline pressure oxidative leaching, Sep. Purif. Technol., 174(2017), p. 389.
|
[5] |
B.M. Ludvigsson and S.R. Larsson, Anode slimes treatment: The Boliden experience, JOM, 55(2003), No. 4, p. 41.
|
[6] |
D. Li, X.Y. Guo, Z.P. Xu, Q.H. Tian, and Q.M. Feng, Leaching behavior of metals from copper anode slime using an alkali fusion-leaching process, Hydrometallurgy, 157(2015), p. 9.
|
[7] |
D.Q. Lin and K.Q. Qiu, Removing arsenic from anode slime by vacuum dynamic evaporation and vacuum dynamic flash reduction, Vacuum, 86(2012), No. 8, p. 1155.
|
[8] |
L. Li, Y. Tian, D.C. Liu, H.J. Zhou, Y.N. Dai, and B. Yang, Pretreatment of lead anode slime with low silver by vacuum distillation for concentrating silver, J. Cent. South Univ., 20(2013), No. 3, p. 615.
|
[9] |
K.Q. Qiu, D.Q. Lin, and X.L. Yang, Vacuum evaporation technology for treating antimony-rich anode slime, JOM, 64(2012), No. 11, p. 1321.
|
[10] |
T. Kinoshita, S. Akita, N. Kobayashi, S. Nii, F. Kawaizumi, and K. Takahashi, Metal recovery from non-mounted printed wiring boards via hydrometallurgical processing, Hydrometallurgy, 69(2003), No. 1-3, p. 73.
|
[11] |
K.H. Park, H.I. Kim, P.K. Parhi, D. Mishra, C.W. Nam, J.T. Park, and D.J. Kim, Extraction of metals from Mo-Ni/Al2O3 spent catalyst using H2SO4 baking-leaching-solvent extraction technique, J. Ind. Eng. Chem., 18(2012), No. 6, p. 2036.
|
[12] |
F.P. Liu, Z.H. Liu, Y.H. Li, Z.Y. Liu, Q.H. Li, and L. Zeng, Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching, Hydrometallurgy, 164(2016), p. 313.
|
[13] |
B. Xu, H. Zhong, and T. Jiang, Recovery of valuable metals from Gacun complex copper concentrate by two-stage countercurrent oxygen pressure acid leaching process, Miner. Eng., 24(2011), No. 10, p. 1082.
|
[14] |
A. Muszer, J. Wódka, T. Chmielewski, and S. Matuska, Covellinisation of copper sulfide minerals under pressure leaching conditions, Hydrometallurgy, 137(2013), No. 5, p. 1.
|
[15] |
M.H. Rodriguez, G.D. Rosales, E.G. Pinna, and D.S. Suarez, Extraction of niobium and tantalum from ferrocolumbite by hydrofluoric acid pressure leaching, Hydrometallurgy, 156(2015), p. 17.
|
[16] |
K.M. Swamy and K.L. Narayana, Intensification of leaching process by dual-frequency ultrasound, Ultrason. Sonochem., 8(2001), No. 4, p. 341.
|
[17] |
K. Ahmadi, Y. Abdollahzadeh, M. Asadollahzadeh, A. Hemmati, H. Tavakoli, and R. Torkaman, Chemometric assisted ultrasound leaching-solid phase extraction followed by dispersive-solidification liquid–liquid microextraction fordetermination of organophosphorus pesticides in soil samples, Talanta, 137(2015), p. 167.
|
[18] |
X.W. Yang, Handbook of Thermodynamic Data in Aqueous Solutions at High Temperature, Metallurgical Industry Press, Beijing, 1983, p. 37.
|
[19] |
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, 1974, p. 489.
|
[20] |
I.A. Ammar and A. Saad, Anodic oxide film on antimony: Ⅱ. Parameters of film growth and dissolution kinetics in neutral and alkaline media, J. Electroanal. Chem. Interfacial Electrochem., 34(1972), No. 1, p. 159.
|
[21] |
M.V. Vojnović and D.B. Šepa, Charge transfer process Sb(Ⅲ)/Sb(V) in alkaline media, J. Electroanal. Chem. Interfacial Electrochem., 39(1972), No. 2, p. 413.
|
[22] |
Y. Zhu, R.D. Xu, Y.L. He, N. Li, and S.Z. Chen, A Method for Separating Lead, Antimony and Arsenic from Anode Slime Alkaline Lixivium, Chinese Patent, Appl. 201611034010.2, 2017.
|
[23] |
J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc., Minnesota, 1995, p. 231.
|
[24] |
L. Santinacci, G.I. Sproule, S. Moisa, D. Landheer, X.H. Wu, A. Banu, T. Djenizian, P. Schmuki, and M.J. Graham, Growth and characterization of thin anodic oxide films on n-InSb(100) formed in aqueous solutions, Corros. Sci., 46(2004), No. 8, p. 2067.
|
[25] |
A. Darwiche, L. Bodenes, L. Madec, L. Monconduit, and H. Martinez, Impact of the salts and solvents on the SEI formation in Sb/Na batteries: An XPS analysis, Electrochim. Acta, 207(2016), p. 284.
|
[26] |
L. Bodenes, A. Darwiche, L. Monconduit, and H. Martinez, The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, J. Power Sources, 273(2015), p. 14.
|
[27] |
P.A. Bertrand, XPS study of chemically etched GaAs and InP, J. Vac. Sci. Technol., 18(1981), No. 1, p. 28.
|
[28] |
Y.H. Li, Z.H. Liu, Q.H. Li, F.P. Liu, and Z.Y. Liu, Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts, Hydrometallurgy, 166(2016), p. 41.
|
[29] |
A. Wikedzi, Å. Sandström, and S.A. Awe, Recovery of antimony compounds from alkaline sulfide leachates, Int. J. Miner. Process., 152(2016), p. 26.
|