留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 2
Feb.  2020

图(7)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  1365
  • HTML全文浏览量:  341
  • PDF下载量:  22
  • 被引次数: 0
Ke-zhou Song, Ping-chao Ke, Zhi-yong Liu,  and Zhi-hong Liu, Co-oxidation of arsenic(III) and iron(II) ions by pressurized oxygen in acidic solutions, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 181-189. https://doi.org/10.1007/s12613-019-1786-9
Cite this article as:
Ke-zhou Song, Ping-chao Ke, Zhi-yong Liu,  and Zhi-hong Liu, Co-oxidation of arsenic(III) and iron(II) ions by pressurized oxygen in acidic solutions, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 181-189. https://doi.org/10.1007/s12613-019-1786-9
引用本文 PDF XML SpringerLink
研究论文

在酸性溶液中加压氧化三价砷离子和二价铁离子

  • Research Article

    Co-oxidation of arsenic(III) and iron(II) ions by pressurized oxygen in acidic solutions

    + Author Affiliations
    • The co-oxidation of As(III) and Fe(II) in acidic solutions by pressured oxygen was studied under an oxygen pressure between 0.5 and 2.0 MPa at a temperature of 150°C. It was confirmed that without Fe(II) ions, As(III) ions in the solutions are virtually non-oxidizable by pressured oxygen even at a temperature as high as 200°C and an oxygen pressure up to 2.0 MPa. Fe(II) ions in the solutions did have a catalysis effect on the oxidation of As(III), possibly attributable to the production of such strong oxidants as hydroxyl free radicals (OH·) and Fe(IV) in the oxidation process of Fe(II). The effects of such factors as the initial molar ratio of Fe(II)/As(III), initial pH value of the solution, oxygen pressure, and the addition of radical scavengers on the oxidation efficiencies of As(III) and Fe(II) were studied. It was found that the oxidation of As(III) was limited in the co-oxidation process due to the accumulation of the As(III) oxidation product, As(V), in the solutions.

    • loading
    • [1]
      A.M. Nazari, R. Radzinski, and A. Ghahreman, Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic, Hydrometallurgy, 174(2017), p. 258. doi: 10.1016/j.hydromet.2016.10.011
      [2]
      P.L. Smedley and D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17(2002), No. 5, p. 517. doi: 10.1016/S0883-2927(02)00018-5
      [3]
      D. Filippou and G.P. Demopoulos, Arsenic immobilization by controlled scorodite precipitation, JOM, 49(1997), No. 12, p. 52. doi: 10.1007/s11837-997-0034-3
      [4]
      M.S. Safarzadeh, M.S. Moats, and J.D. Miller, An update to “Recent trends in the processing of enargite concentrates”, Miner. Process. Extr. Metall. Rev., 35(2014), No. 6, p. 390. doi: 10.1080/08827508.2012.725683
      [5]
      M.A. Fernández, M. Segarra, and F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from copper refining, Hydrometallurgy, 41(1996), No. 2-3, p. 255. doi: 10.1016/0304-386X(95)00061-K
      [6]
      L.U. Molnár, E. Virčíkova, and P. Lech, Experimental study of As(III) oxidation by hydrogen peroxide, Hydrometallurgy, 35(1994), No. 1, p. 1. doi: 10.1016/0304-386X(94)90013-2
      [7]
      L.H. Sun, R.P. Liu, S.J. Xia, Y.L. Yang, and G.B. Li, Enhanced As(III) removal with permanganate oxidation, ferric chloride precipitation and sand filtration as pretreatment of ultrafiltration, Desalination, 243(2009), No. 1-3, p. 122. doi: 10.1016/j.desal.2008.04.019
      [8]
      S. Sorlini and F. Gialdini, Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine, Water Res., 44(2010), No. 19, p. 5653. doi: 10.1016/j.watres.2010.06.032
      [9]
      M.C. Dodd, N.D. Vu, A. Ammann, V.C. Le, R. Kissner, H.V. Pham, T.H. Cao, M. Berg, and U. von Gunten, Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment, Environ. Sci. Technol., 40(2006), No. 10, p. 3285. doi: 10.1021/es0524999
      [10]
      S. Khuntia, S.K. Majumder, and P. Ghosh, Oxidation of As(III) to As(V) using ozone microbubbles, Chemosphere, 97(2014), p. 120. doi: 10.1016/j.chemosphere.2013.10.046
      [11]
      T. Loegager, J. Holcman, K. Sehested, and T. Pedersen, Oxidation of ferrous ions by ozone in acidic solutions, Inorg. Chem., 31(1992), No. 17, p. 3523. doi: 10.1021/ic00043a009
      [12]
      M. Bissen and F.H. Frimmel, Arsenic—a review. part II: oxidation of arsenic and its removal in water treatment, Acta Hydroch. Hydrob., 31(2003), No. 2, p. 97. doi: 10.1002/aheh.200300485
      [13]
      S.L. Shumlas, S. Singireddy, A.C. Thenuwara, N.H. Attanayake, R.J. Reeder, and D.R. Strongin, Oxidation of arsenite to arsenate on birnessite in the presence of light, Geochem. Trans., 17(2016), art No. 5.
      [14]
      B.A. Manning, S.E. Fendorf, B. Bostick, and D.L. Suarez, Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite, Environ. Sci. Technol., 36(2002), No. 5, p. 976. doi: 10.1021/es0110170
      [15]
      Y.H. Li, Z.H. Liu, F.P. Liu, Q.H. Li, Z.Y. Liu, and L. Zeng, Promotion effect of KMnO4 on the oxidation of As(III) by air in alkaline solution, J. Hazard. Mater., 280(2014), p. 315. doi: 10.1016/j.jhazmat.2014.08.008
      [16]
      N. Bhandari, R.J. Reeder, and D.R. Strongin, Photoinduced oxidation of arsenite to arsenate in the presence of goethite, Environ. Sci. Technol., 46(2012), No. 15, p. 8044. doi: 10.1021/es300988p
      [17]
      R. Woods, I.M. Kolthoff, and E.J. Meehan, Arsenic(IV) as an intermediate in the induced oxidation of arsenic(III) by the iron(II)-persulfate reaction and the photoreduction of iron(III). I. absence of oxygen, J. Am. Chem. Soc., 85(1963), No. 16, p. 2385. doi: 10.1021/ja00899a010
      [18]
      T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura, Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I, Hdrometallurgy, 90(2008), No. 2-4, p. 92. doi: 10.1016/j.hydromet.2007.09.012
      [19]
      T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura, Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part II. Effect of temperature and air, Hydrometallurgy, 90(2008), No. 2-4, p. 85. doi: 10.1016/j.hydromet.2007.09.011
      [20]
      M.R. Rönnholm, J. Wärnå, T. Salmi, I. Turunen, and M. Luoma, Kinetics of oxidation of ferrous sulfate with molecular oxygen, Chem. Eng. Sci., 54(1999), No. 19, p. 4223. doi: 10.1016/S0009-2509(99)00117-7
      [21]
      Y. Wang, K. Otsuka, and K. Ebitani, In situ FTIR study on the active oxygen species for the conversion of methane to methanol, Catal. Lett., 35(1995), No. 3-4, p. 259. doi: 10.1007/BF00807181
      [22]
      D.A. Wink, R.W. Nims, M.F. Desrosiers, P.C. Ford, and L.K. Keefer, A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethylamine: evidence for an oxidative pathway not involving hydroxyl radical, Chem. Res. Toxicol., 4(1991), No. 5, p. 510. doi: 10.1021/tx00023a002
      [23]
      S.H. Bossmann, E. Oliveros, S. Göb, S. Siegwart, E.P. Dahlen, L. Payawan, M. Straub, M. Wörner, and A.M. Braun, New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions, J. Phys. Chem. A, 102(1998), No. 28, p. 5542. doi: 10.1021/jp980129j
      [24]
      S.J. Hug and O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction, Environ. Sci. Technol., 37(2003), No. 12, p. 2734. doi: 10.1021/es026208x
      [25]
      Z.H. Wang, R.T. Bush, and J.S. Liu, Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands, Chemosphere, 93(2013), No. 9, p. 1936. doi: 10.1016/j.chemosphere.2013.06.076
      [26]
      T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, and T. Nakamura, Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite, Hydrometallurgy, 96(2009), No. 3, p. 189. doi: 10.1016/j.hydromet.2008.10.003
      [27]
      A.J. Monhemius and P.M. Swash, Removing and stabilizing as from copper refining circuits by hydrothermal processing, JOM, 51(1999), No. 9, p. 30. doi: 10.1007/s11837-999-0155-y
      [28]
      J. Müller, Determination of inorganic arsenic(III) in ground water using hydride generation coupled to ICP-AES (HG-ICP-AES) under variable sodium boron hydride (NaBH4) concentrations, Fresenius J. Anal. Chem., 363(1999), No. 5-6, p. 572. doi: 10.1007/s002160051250
      [29]
      X.W. Yang, A.P. He, and B.Z. Yuan, Handbook of Thermodynamic Calculation for High Temperature Aqueous Solutions, Metallurgical Industry Press, Beijing, 1983, p. 34.
      [30]
      J.D. Rush, and B.H.J. Bielski, Pulse radiolysis studies of alkaline iron(III) and iron(VI) solutions. Observation of transient iron complexes with intermediate oxidation states, J. Am. Chem. Soc., 108(1986), No. 3, p. 523. doi: 10.1021/ja00263a037
      [31]
      U.K. Klaening, B.H.J. Bielski, and K. Sehested, Arsenic(IV). A pulse-radiolysis study, Inorg. Chem., 28(1989), No. 14, p. 2717. doi: 10.1021/ic00313a007
      [32]
      B.H.J. Bielski and D.E. Cabelli, Superoxide and hydroxyl radical chemistry in aqueous solution, [in] C.S. Foote, J.S. Valentine, A. Greenberg, and J.F. Liebman, eds., Active Oxygen in Chemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH Series), Vol 2. Springer, Dordrecht, 1995, p. 70.

    Catalog


    • /

      返回文章
      返回