Cite this article as: |
Di-qing Wan, Ying-lin Hu, Shu-ting Ye, Zhu-min Li, Li-li Li, and Yi Huang, Effect of alloying elements on magnesium alloy damping capacities at room temperature, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 760-765. https://doi.org/10.1007/s12613-019-1789-6 |
Di-qing Wan E-mail: divadwan@163.com
[1] |
Z.L. Zhang, X.Q. Zeng, and W.J. Ding, The influence of heat treatment on damping response of AZ91D magnesium alloy, Mater. Sci. Eng. A, 392(2005), No. 1-2, p. 150.
|
[2] |
R. Ma, X.P. Dong, B.S. Yan, S.Q. Chen, Z.B. Li, Z. Pan, H.J. Ling, and Z.T. Fan, Mechanical and damping properties of thermal treated Mg-Zn-Y-Zr alloys reinforced with quasicrystal phase, Mater. Sci. Eng. A, 602(2014), p. 11.
|
[3] |
W.Z. Huang, H.J. Luo, Y.L. Mu, H. Lin, and H. Du, Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 701.
|
[4] |
R. González-Martínez, J. Göken, D. Letzig, K. Steinhoff, and K.U. Kainer, Influence of aging on damping of the magnesium-aluminium-zinc series, J. Alloys Compd., 437(2007), No. 1, p. 127.
|
[5] |
S.Q. Feng, W.Y. Zhang, Y.H. Zhang, J.Y. Guan, and Y.C. Xu, Microstructure, mechanical properties and damping capacity of heat-treated Mg-Zn-Y-Nd-Zr alloy, Mater. Sci. Eng. A, 609(2014), p. 283.
|
[6] |
A. Granato and K. Lücke, Theory of mechanical damping due to dislocations, J. Appl. Phys., 27(1956), p. 583.
|
[7] |
A. Granato and K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies, J. Appl. Phys., 27(1956), p. 789.
|
[8] |
T. Gancarz, J. Jourdan, W. Gasior, and H. Henein, Physicochemical properties of Al, Al-Mg and Al-Mg-Zn alloys, J. Mol. Liq., 249(2018), p. 471.
|
[9] |
S.S.V. Tatiparti and F. Ebrahimi, Nanostructure stabilization in electrodeposited Al-Mg dendrites, J. Alloys Compd., 694(2017), p. 634.
|
[10] |
D. Nagarajan, X. Ren, and C.H. Cáceres, Anelastic behavior of Mg-Al and Mg-Zn solid solutions, Mater. Sci. Eng. A, 696(2017), p. 387.
|
[11] |
S. Zhu, Z.H. Li, L.Z. Yan, X.W. Li, S.H. Huang, H.W. Yan, Y.G. Zhang, and B.Q. Xiong, Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy, Mater. Charact., 145(2018), p. 258.
|
[12] |
T. Motoyama, H. Watanabe, N. Ikeo, and T. Mukai, Mechanical and damping properties of equal channel angular extrusion-processed Mg-Ca alloys, Mater. Lett., 201(2017), p. 145.
|
[13] |
L.B. Ren, G.F. Quan, Y.G. Xu, D.D. Yin, J.W. Lu, and J.T. Dang, Effect of heat treatment and pre-deformation on damping capacity of cast Mg-Y binary alloys, J. Alloys Compd., 699(2017), p. 976.
|
[14] |
H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800.
|
[15] |
A. Puškár. Internal Friction of Materials, Cambridge International Science Publishing, Cambridge, 2001, p. 386.
|
[16] |
Y.J. Cui, Y.P. Li, S.H. Sun, H.K. Bian, H. Huang, Z.C. Wang, Y. Koizumi, and A. Chiba, Enhanced damping capacity of magnesium alloys by tensile twin boundaries, Scripta Mater., 101(2015), p. 8.
|
[17] |
L.H. Liao, X.Q. Zhang, H.W. Wang, X.F. Li, and N.H. Ma, The characteristic of damping peak in Mg-9Al-Si Alloys, J. Alloys Compd., 429(2007), No. 1, p. 163.
|
[18] |
L. Gao, R.S. Chen, and E.H. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd., 481(2009), No. 1-2, p. 379.
|
[19] |
Z.R. Liu and D.Y. Li, The electronic origin of strengthening and ductilizing magnesium by solid solutes, Acta Mater., 89(2015), p. 225.
|
[20] |
E.A. Protopopov, A.I. Val’ter, A.A. Protopopov, and P.I. Malenko, Regression relations for estimating the mechanical properties of steels subjected to solid-solution hardening, Russ. Metall., 2015(2015), No. 7, p. 565.
|
[21] |
Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu, and S. Kamado, Effect of Ca/Al ratio on microstructure and mechanical properties of Mg-Al-Ca-Mn alloys, Mater. Sci. Eng. A, 682(2017), p. 423.
|
[22] |
C.H. Cáceres and D.M. Rovera, Solid solution strengthening in concentrated Mg-Al alloys, J. Light Met., 1(2001), No. 3, p. 151.
|
[23] |
K.M. Asl, A. Masoudi, and F. Khomamizadeh, The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg-Al-Zn alloy, Mater. Sci. Eng. A, 527(2010), No. 7-8, p. 2027.
|
[24] |
T. Bhattacharjee, C.L. Mendis, T.T. Sasaki, T. Ohkubo, and K. Hono, Effect of Zr addition on the precipitation in Mg-Zn-based alloy, Scripta Mater., 67(2012), No. 12, p. 967.
|
[25] |
X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling, Mater. Sci. Eng. A, 488(2008), No. 1-2, p. 214.
|
[26] |
J.J. He, B. Jiang, H.M. Xie, Z.T. Jiang, B. Liu, and F.S. Pan, Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion, Mater. Sci. Eng. A, 675(2016), p. 76.
|
[27] |
H. Feng, H.P. Liu, H. Cao, Y. Yang, Y.C. Xu, and J.Y. Guan, Effect of precipitates on mechanical and damping properties of Mg-Zn-Y-Nd alloys, Mater. Sci. Eng. A, 639(2015), p. 1.
|
[28] |
E. Pink and A. Grinberg, Stress drops in serrated flow curves of A15Mg, Acta Metall., 30(1982), No. 12, p. 2153.
|
[29] |
J.A. Yasi, L.G. Hector Jr, and D.R. Trinkle, First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties, Acta Mater., 58(2010), No. 17, p. 5704.
|
[30] |
R.L. Fleisgher, Solution hardening, Acta Metall., 9(1961), No. 11, p. 996.
|