留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 6
Jun.  2019
数据统计

分享

计量
  • 文章访问数:  493
  • HTML全文浏览量:  78
  • PDF下载量:  10
  • 被引次数: 0
L. A. Santa-Cruz, G. Machado, A. A. Vicente, T. F. C. Hermenegildo, and T. F. A. Santos, Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 710-721. https://doi.org/10.1007/s12613-019-1790-0
Cite this article as:
L. A. Santa-Cruz, G. Machado, A. A. Vicente, T. F. C. Hermenegildo, and T. F. A. Santos, Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 710-721. https://doi.org/10.1007/s12613-019-1790-0
引用本文 PDF XML SpringerLink
研究论文

Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures

  • 通讯作者:

    T. F. A. Santos    E-mail: tiago.felipe@ufpe.br

  • The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material. This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels (SDSSs) joined by friction stir welding, employing cyclic polarization, Mott-Schottky, and microscopy techniques for analysis. The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760, as well as decreased corrosion resistance. The presence of molybdenum in the steels promoted better passive behavior at low pH. The Mott-Schottky curves revealed p-n heterojunction behavior of the passive oxide. Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.
  • Research Article

    Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures

    + Author Affiliations
    • The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material. This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels (SDSSs) joined by friction stir welding, employing cyclic polarization, Mott-Schottky, and microscopy techniques for analysis. The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760, as well as decreased corrosion resistance. The presence of molybdenum in the steels promoted better passive behavior at low pH. The Mott-Schottky curves revealed p-n heterojunction behavior of the passive oxide. Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.
    • loading
    • [1]
      M.F. McGuire, Stainless Steels for Design Engineers, ASM International, Ohio, 2008.
      [2]
      S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, and J.A. de Souza. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750, Mater. Charact., 58(2007), No. 7, p. 610.
      [3]
      R.S. Mishra and M.W. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1.
      [4]
      M.K. Mishra, G. Gunasekaran, A.G. Rao, B.P. Kashyap, and N. Prabhu, Effect of multipass friction stir processing on mechanical and corrosion behavior of 2507 super duplex stainless steel, J. Mater. Eng. Perform., 26(2017), No. 2, p. 849.
      [5]
      M. Atapour, H. Sarlak, and M. Esmailzadeh, Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints, Int. J. Adv. Manuf. Technol., 83(2016), No. 5-8, p. 721.
      [6]
      Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, and J.L. Zhang, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints, Appl. Surf. Sci., 394(2017), p. 297.
      [7]
      T. Takei, M. Yabe, and F.G. Wei, Effect of cooling condition on the intergranular corrosion resistance of UNS S32506 duplex stainless steel, Corros. Sci., 122(2017), p. 80.
      [8]
      F. Iacoviello, V. Di Cocco, and L.D. Agostino, Integranular corrosion susceptibility analysis in stainless steels (duplex) stainless steels, Procedia Struct. Integrity, 3(2017), p. 276.
      [9]
      E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang, and F.H. Wang, The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels, Electrochim. Acta, 55(2010), No. 17, p. 5028.
      [10]
      M. Metikoš-Hukovic, R. Babic, Z. Grubač, Ž. Petrovic, and N. Lajçi, High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution, Corros. Sci., 53(2011), No. 6, p. 2176.
      [11]
      Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chen, X. Wang, Z.Y. Liu, and X.G. Li, Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates, Corros. Sci., 118(2017), p. 31.
      [12]
      T.S. Li, L. Liu, B. Zhang, Y. Li, and F.H. Wang, Growth kinetics of metastable pits on sputtered nanocrystalline stainless steel, Corros. Sci., 124(2017), p. 46.
      [13]
      G.T. Burstein, M. Carboneras, and B.T. Daymond, The temperature dependence of passivity breakdown on a titanium alloy determined by cyclic noise thermammetry, Electrochim. Acta, 55(2010), No. 27, p. 7860.
      [14]
      M.V. Cardoso, S.T. Amaral, and E.M.A, Martini, Temperature effect in the corrosion resistance of Ni–Fe–Cr alloy in chloride medium, Corros. Sci., 50(2008), No. 9, p. 2429.
      [15]
      P.D. Krell, S.X. Li, and H.B. Cong, Synergistic effect of temperature and HCl concentration on the degradation of AISI 410 stainless steel, Corros. Sci., 122(2017), p. 41.
      [16]
      H.P. Leckie, Effect of pH on the stable passivity of stainless steels, Corrosion, 24(1968), No. 3, p. 70.
      [17]
      K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corros. Sci., 17(1977), No. 5, p. 425.
      [18]
      G.T. Burstein and B.T. Daymond, The remarkable passivity of austenitic stainless steel in sulphuric acid solution and the effect of repetitive temperature cycling, Corros. Sci., 51(2009), No. 10, p. 2249.
      [19]
      C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of temperature on passive film formation of UNS N08031 Cr–Ni alloy in phosphoric acid contaminated with different aggressive anions, Electrochim. Acta, 111(2013), p. 552.
      [20]
      S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980.
      [21]
      S. Mischler, A. Vogel, H.J. Mathieu, and D. Landolt, The chemical composition of the passive film on Fe24Cr and Fe24Cr11Mo studied by AES, XPS and SIMS, Corros. Sci., 32(1991), No. 9, p. 925.
      [22]
      T.F.A. Santos, H.S. Idagawa, and A.J. Ramirez, Thermal history in UNS S32205 duplex stainless steel friction stir welds, Sci. Technol. Weld. Joining, 19(2014), No. 2, p. 150.
      [23]
      H.S. Idagawa, T.F.A. Santos, and A.J. Ramirez, Differential evolution algorithm applied to FSW model calibration, J. Phys. Conf. Ser., 490(2014), No. 1, art. No. 012215.
      [24]
      T.F.A. Santos, E.A. Torres, T.F.C. Hermengildo, and A.J. Ramirez, Development of ceramic backing for friction stir welding and processing, Weld. Int., 30(2016), No. 5, p. 338.
      [25]
      T.F.A. Santos, E.A. Torres, J.C. Lippold, and A.J. Ramirez, Detailed microstructural characterization and restoration mechanisms of duplex and superduplex stainless steel friction-stir-welded joints, J. Mater. Eng. Perform., 25(2016), No. 12, p. 5173.
      [26]
      T.F.A. Santos, E.A. Torres, E.B. Fonseca, and A.J. Ramirez, Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance, Mater. Res., 19(2016), No. 1, p. 117.
      [27]
      ASTM International, ASTM A923-14: Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels, West Conshohocken, PA, 2014.
      [28]
      T.F.A. Santos, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds, Rem: Rev. Esc. Minas, 66(2013), No. 2, p. 187.
      [29]
      E.M. Westin, Microstructure and Properties of Welds in the Lean Duplex Stainless Steel LDX 2101[Dissertation], Royal Institute of Technology, Stockholm, 2010.
      [30]
      W.S. Tait, An Introduction to Eletrochemical Corrosion Testing For Practicing Engineers and Scientists, Pair O Docs Pubns, Racine, 1994.
      [31]
      G.T. Burstein, A hundred years of Tafel’s Equation: 1905–2005, Corros. Sci., 47(2005), p. 2858.
      [32]
      N. Takeno, Atlas of Eh–pH Diagrams: Intercomparison of Thermodynamic Databases, Geological Survey of Japan Open File Report No. 419, National Institute of Advanced Industrial Science and Technology, Tokyo, 2005
      [33]
      P.C. Pistorius and G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability, Philos. Trans. R. Soc. A, 341(1992), p. 531.
      [34]
      C.O.A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093.
      [35]
      G.T. Burstein and D. Sazou, Passivity and Localized Corrosion, Elsevier Inc., 2016. doi: 10.1016/B978-0-12-803581-8. 01589-7.
      [36]
      I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne, and T. Saario, The transpassive dissolution mechanism of highly alloyed stainless steels I. Experimental results and modelling procedure, 44(2002), No. 2, p. 2675.
      [37]
      H. Sarlak, M. Atapour, and M. Esmailzadeh, Corrosion behavior of friction stir welded lean duplex stainless steel, Mater. Des., 66(2015), p. 209.
      [38]
      N.E. Hakiki, B. Maachi, F. Mechehoud, C. Pirri, A. Mehdaoui, and J.L. Bubendorff, Structural and semiconductive investigation of passive films and thermally grown oxides on stainless steels,[in] 7th European Stainless Steel Conference, Como, 2011, p. 58.
      [39]
      S. Fujimoto and H. Tsuchiya, Semiconductor Property of Passive Films and Corrosion Behavior of Fe–Cr Alloys,[In] Y. Waseda, S. Suzuki, Eds., Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin, Heidelberg, 2006, p. 33.
      [40]
      L.V. Taveira, M.F. Montemor, M. Da Cuhha Belo, M.G. Ferreira, and L.F.P. Dick, Influence of incorporated Mo and Nb on the Mott–Schottky behaviour of anodic films formed on AISI 304L, Corros. Sci., 52(2010), No. 9, p. 2813.
      [41]
      N.B. Hakiki, S. Boudin, B. Rondot, and M. Da Cunha Belo, The electronic structure of passive films formed on stainless steels, Corros. Sci., 37(1995), No. 11, p. 1809.
      [42]
      S. Ningshen, U.K. Mudali, V.K. Mittal, and H.S. Khatak, Semiconducting and passive films properties of nitrogen-containing type 316LN stainless steel, Corros. Sci., 49(2007), No. 2, p. 481.
      [43]
      E.C. Paredes, A. Bautista, S.M. Alvarez, and F. Velasco, Influence of the forming process of corrugated stainless steels on their corrosion behaviour in simulated pore solutions, Corros. Sci., 58(2012), p. 52.
      [44]
      L. Wang, C.Y. Lee, and P. Schmuki, Solar water splitting: preserving the beneficial smaller feature size in porous α-Fe2O3 photoelectrodes during annealing, J. Mater. Chem. A, 1(2012), No. 2, p. 212.
      [45]
      D.R. Chowdhury, L. Spiccia, S.S. Amritphale, A. Paul, and A. Singh, A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions, J. Mater. Chem. A, 4(2016), No. 10, p. 3655.
      [46]
      C.Y. Lin, D. Mersch, D.A. Jefferson, and E. Reisner, Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes, Chem. Sci., 5(2014), No. 12, p. 4906.
      [47]
      L. Tan and Y. Yang, In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe–Cr–Ni alloys, Mater. Lett., 158(2015), p. 233.
      [48]
      I.J. Marques, A.A. Vicente, J.A.S. Tenório, and T.F.A. Santos, Double kinetics of intermetallic phase precipitation in UNS S32205 duplex stainless steels submitted to isothermal heat treatment, Mater. Res., 20(2017), Suppl. 2, p. 152.
      [49]
      S.B. Kim, K.W. Paik, and Y.G. Kim, Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels, Mater. Sci. Eng. A, 247(1998), No. 1-2, p. 67.
      [50]
      J.S. Kim and H.S. Kwon, Effects of tungsten on corrosion and kinetics of sigma phase formation of 25% chromium duplex stainless steels, Corrosion, 55(1999), No. 5, p. 512.
      [51]
      A.R. Akisanya, U. Obi, and N.C. Renton, Effect of ageing on phase evolution and mechanical properties of a high tungsten super-duplex stainless steel, Mater. Sci. Eng. A, 535(2012), p. 281.

    Catalog


    • /

      返回文章
      返回