留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 7
Jul.  2019
数据统计

分享

计量
  • 文章访问数:  667
  • HTML全文浏览量:  130
  • PDF下载量:  17
  • 被引次数: 0
A. V. Koltygin, V. E. Bazhenov, R. S. Khasenova, A. A. Komissarov, A. I. Bazlov, and V. A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp. 858-868. https://doi.org/10.1007/s12613-019-1801-1
Cite this article as:
A. V. Koltygin, V. E. Bazhenov, R. S. Khasenova, A. A. Komissarov, A. I. Bazlov, and V. A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp. 858-868. https://doi.org/10.1007/s12613-019-1801-1
引用本文 PDF XML SpringerLink
研究论文

Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys

  • 通讯作者:

    V. E. Bazhenov    E-mail: V.E.Bagenov@gmail.com

  • Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0-0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase; by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.
  • Research Article

    Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys

    + Author Affiliations
    • Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0-0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase; by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.
    • loading
    • [1]
      I.J. Polmear, Magnesium alloys and applications, Mater. Sci. Technol., 10(1994), No. 1, p. 1.
      [2]
      B.L. Mordike and T. Ebert, Magnesium. Properties-applications-potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.
      [3]
      I.J. Polmear, Light Alloys:From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, Oxford, 2006, p. 241.
      [4]
      I.Y. Mukhina, V.M. Lebedev, K.H. Kim, and D.K. Kim, Investigation of the microstructure and properties of castable neodymium-and yttrium-bearing magnesium alloys at elevated temperatures, Met. Sci. Heat Treat., 39(1997), No. 5, p. 202.
      [5]
      G. Sha, J.H. Li, W. Xu, K. Xia, W.Q. Jie, and S.P. Ringer, Hardening and microstructural reactions in high-temperature equal-channel angular pressed Mg-Nd-Gd-Zn-Zr alloy, Mater. Sci. Eng. A, 527(2010), No. 20, p. 5092.
      [6]
      B.K. Park, J.H. Jun, and J.M. Kim, Influence of Zn addition on aging response and corrosion resistance of Mg-Gd-Nd-Zr alloy, Mater. Trans., 49(2008), No. 5, p. 931.
      [7]
      S. Gavras, T. Subroto, R.H. Buzolin, N. Hort, and D. Tolnai, The role of Zn additions on the microstructure and mechanical properties of Mg-Nd-Zn alloys, Int. J. Metalcast., 12(2018), No. 3, p. 428.
      [8]
      A. Luo and M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. Mater. Sci., 29(1994), No. 20, p. 5259.
      [9]
      G.L. Bi, Y.D. Li, S.J. Zang, J.B. Zhang, Y. Ma, and Y. Hao, Microstructure, mechanical and corrosion properties of Mg-2Dy-xZn (x=0, 0.1, 0.5 and 1at.%) alloys, J. Magnesium Alloys, 2(2014), No. 1, p. 64.
      [10]
      M. Suzuki, T. Kimura, J. Koike, and K. Maruyama, Effects of zinc on creep strength and deformation substructures in Mg-Y alloy, Mater. Sci. Eng. A, 387-389(2004), p. 706.
      [11]
      Y.H. Kang, D. Wu, R.S. Chen, and E.H. Han, Microstructures and mechanical properties of the age hardened Mg-4.2Y-2.5Nd-1Gd-0.6Zr (WE43) microalloyed with Zn, J. Magnesium Alloys, 2(2014), No. 2, p. 109.
      [12]
      M. Nishijima, K. Hiraga, M. Yamasaki, and Y. Kawamura, The structure of Guinier-Preston zones in an Mg-2at% Gd-1at% Zn alloy studied by transmission electron microscopy, Mater. Trans., 49(2008), No. 1, p. 227.
      [13]
      J.H. Li, G. Sha, P. Schumacher, and S.P. Ringer, Precipitation process in Mg-Nd-Zn-Zr-Gd/Y alloy,[in] Proc. Symp. Magnesium Technology, San Diego, 2011, p. 255.
      [14]
      X.W. Yu, B. Jiang, J.J. He, B. Liu, Z.T. Jiang, and F.S. Pan, Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures, J. Alloys Compd., 687(2016), p. 252.
      [15]
      P. Lyon, I. Syed, A.J. Boden, and K. Savage, Magnesium Alloys Containing Rare Earths, U.S. Patent, Appl. 13/121588, 2009.
      [16]
      J.L. Schenkel, Anodized Magnesium or Magnesium Alloy Piston and Method for Manufacturing the Same, U.S. Patent, Appl. 09/970822, 2001.
      [17]
      L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals:Structure and Properties, Taylor & Francis, London, 2003, p. 32.
      [18]
      J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43(2012), No. 11, p. 3891.
      [19]
      G.L. Xu, L.G. Zhang, L.B. Liu, Y. Du, F. Zhang, K. Xu, S.H. Liu, M.Y. Tan, and Z.P. Jin, Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment, J. Magnesium Alloys, 4(2016), No. 4, p. 249.
      [20]
      C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Hardening precipitation in a Mg-4Y-3RE alloy, Acta Mater. 51(2003), No. 18, p. 5335.
      [21]
      Z.Q. Wang, B. Zhang, D.J. Li, R. Fritzsch, X.Q. Zeng, H.J. Roven, and W.J. Ding, Effect of heat treatment on microstructures and mechanical properties of high vacuum die casting Mg-8Gd-3Y-0.4Zr magnesium alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 12, p. 3762.
      [22]
      J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science, CALPHAD, 26(2002), No. 2, p. 273.
      [23]
      E. Scheil, Bemerkungen zur schichtkristallbildung, Z. Metallkd., 34(1942), p. 70.
      [24]
      Thermo-Calc software TCAL4 Magnesium Alloys Database Version 4[1 January 2018] https://www.thermocalc.com/media/19850/tcmg4_extended_info.pdf.
      [25]
      M.A. Easton and D.H. StJohn, A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Mater., 49(2001), No. 10, p. 1867.
      [26]
      T.E. Quested, A.T. Dinsdale, and A.L. Greer, Thermodynamic modelling of growth-restriction effects in aluminium alloys, Acta Mater., 53(2005), No. 5, p. 1323.
      [27]
      R. Schmid-Fetzer and A. Kozlov, Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification, Acta Mater., 59(2011), No. 15, p. 6133.
      [28]
      M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura, Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature, Acta Mater., 55(2007), No. 20, p. 6798.
      [29]
      Y.M. Zhu, A.J. Morton, and J.F. Nie, The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys, Acta Mater., 58(2010), No. 8, p. 2936.
      [30]
      H.H Zhang, J.F. Fan, L. Zhang, G.H. Wu, W.C. Liu, W.D. Cui, and S. Feng, Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg-4Y-3Nd-1Gd-0.2Zn-0.5Zr alloy, Mater. Sci. Eng. A, 677(2016), p. 411.
      [31]
      S.A. El Majid, G. Atiya, M. Bamberger, and A. Katsman, Nucleation and growth of metastable phases in Mg-Nd, Mg-Gd and Mg-Gd-Nd based alloys,[in] Proc. Symp. Magnesium Technology 2014, San Diego, 2014, p. 179.
      [32]
      P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai, Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt%) alloy, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 183.
      [33]
      Y. Ali, D. Qiu, B. Jiang, F.S. Pan, and M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys:A review article, J. Alloys Compd., 619(2015), p. 639.
      [34]
      H.C. Pan, F.S. Pan, R.M. Yang, J. Peng, C.Y. Zhao, J. She, Z.Y. Gao, and A.T. Tang, Thermal and electrical conductivity of binary magnesium alloys, J. Mater. Sci., 49(2014), No. 8, p. 3107.
      [35]
      M. Yamasaki and Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long-period stacking ordered phase, Scripta Mater., 60(2009), No. 4, p. 264.
      [36]
      Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys, Corros. Sci., 65(2012), p. 322.
      [37]
      E.L. Zhang, D.S. Yin, L.P. Xu, L. Yang, and K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application, Mater. Sci. Eng. C, 29(2009), No. 3, p. 987.
      [38]
      Y. Yan, H.W. Cao, Y.J. Kang, K. Yu, T. Xiao, J. Luo, Y.W. Deng, H.J. Fang, H.Q. Xiong, and Y.L. Dai, Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy, J. Alloys Compd., 693(2017), p. 1277.
      [39]
      H. Hermawan, D. Dubé, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater., 6(2010), No. 5, p. 1693.
      [40]
      E. Lukyanova, N. Anisimova, N. Martynenko, M. Kiselevsky, S. Dobatkin, and Y. Estrin, Features of in vitro and in vivo behaviour of magnesium alloy WE43, Mater. Lett., 215(2018), p. 308.
      [41]
      E. Lukyanova, N. Anisimova, N. Martynenko, M. Kiselevsky, S. Dobatkin, and Y. Estrin, Features of in vitro and in vivo behaviour of magnesium alloy WE43, Mater. Lett., 215(2018), p. 308.

    Catalog


    • /

      返回文章
      返回