留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 6
Jun.  2019
数据统计

分享

计量
  • 文章访问数:  508
  • HTML全文浏览量:  95
  • PDF下载量:  13
  • 被引次数: 0
Li-nan Zhang, Xi-lin Xiong, Yu Yan, Ke-wei Gao, Li-jie Qiao, and Yan-jing Su, Atomic modeling for the initial stage of chromium passivation, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 732-739. https://doi.org/10.1007/s12613-019-1803-z
Cite this article as:
Li-nan Zhang, Xi-lin Xiong, Yu Yan, Ke-wei Gao, Li-jie Qiao, and Yan-jing Su, Atomic modeling for the initial stage of chromium passivation, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 732-739. https://doi.org/10.1007/s12613-019-1803-z
引用本文 PDF XML SpringerLink
研究论文

Atomic modeling for the initial stage of chromium passivation

  • 通讯作者:

    Yan-jing Su    E-mail: yjsu@ustb.edu.cn

  • The well-known anti-corrosive property of stainless steels is largely attributed to the addition of Cr, which can assist in forming an inert film on the corroding surface. To maximize the corrosion-resistant ability of Cr, a thorough study dealing with the passivation behaviors of this metal, including the structure and composition of the passive film as well as related reaction mechanisms, is required. Here, continuous electrochemical adsorptions of OH-groups of water molecules onto Cr terraces in acid solutions are investigated using DFT methods. Different models with various surface conditions are applied. Passivation is found to begin in the active region, and a fully coated surface mainly with oxide is likely to be the starting point of the passive region. The calculated limiting potentials are in reasonable agreement with passivation potentials observed via experiment.
  • Research Article

    Atomic modeling for the initial stage of chromium passivation

    + Author Affiliations
    • The well-known anti-corrosive property of stainless steels is largely attributed to the addition of Cr, which can assist in forming an inert film on the corroding surface. To maximize the corrosion-resistant ability of Cr, a thorough study dealing with the passivation behaviors of this metal, including the structure and composition of the passive film as well as related reaction mechanisms, is required. Here, continuous electrochemical adsorptions of OH-groups of water molecules onto Cr terraces in acid solutions are investigated using DFT methods. Different models with various surface conditions are applied. Passivation is found to begin in the active region, and a fully coated surface mainly with oxide is likely to be the starting point of the passive region. The calculated limiting potentials are in reasonable agreement with passivation potentials observed via experiment.
    • loading
    • [1]
      X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: share corrosion data, Nature, 527(2015), p. 441.
      [2]
      N. Ahmad and A.G. MacDiarmid, Inhibition of corrosion of steels with the exploitation of conducting polymers, Synth. Met., 78(1996), No. 2, p. 103.
      [3]
      T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corros. Sci., 14(1974), No. 4, p. 279.
      [4]
      M. Stratmann, K. Bohnenkamp, and T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron, Corros. Sci., 27(1987), No. 9, p. 905.
      [5]
      T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corros. Sci., 42(2000), No. 9, p. 1611.
      [6]
      T. Ujiro, S. Satoh, R.W. Staehle, and W.H. Smyrl, Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media, Corros. Sci., 43(2001), No. 11, p. 2185.
      [7]
      Y.S. Choi, J.J. Shim, and J.G. Kim, Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water, J. Alloys Compd., 391(2005), No. 1-2, p. 162.
      [8]
      A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, and R. Arrabal, Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels, Acta Mater., 55(2007), No. 7, p. 2239.
      [9]
      N. Hara and K. Sugimoto, The study of the passivation films on Fe-Cr alloys by modulation spectroscopy, J. Electrochem. Soc., 126(1979), No. 8, p. 1328.
      [10]
      M. Keddam, O.R. Mattos, and H. Takenouti, Mechanism of anodic dissolution of iron-chromium alloys investigated by electrode impedances—I. Experimental results and reaction model, Electrochim. Acta, 31(1986), No. 9, p. 1147.
      [11]
      P. Marcus and J.M. Grimal, The anodic dissolution and pas sivation of NiCrFe alloys studied by ESCA, Corros. Sci., 33(1992), No. 5, p. 805.
      [12]
      C.S. Wang, C.Y. Tsai, C.G. Chao, and T.F. Liu, Effect of chromium content on corrosion behaviors of Fe–9Al–30Mn–(3,5,6.5,8)Cr–1C alloys, Mater. Trans., 48(2007), No. 4, p. 2973.
      [13]
      B. Jegdić, D.M. Dražić, and J.P. Popić, Open circuit potentials of metallic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them, Corros. Sci., 50(2008), No. 5, p. 1235.
      [14]
      K. Sugimoto and S. Matsuda, Passive and transpassive films on Fe–Cr alloys in acid and neutral solutions, Mater. Sci. Eng., 42(1980), p. 181.
      [15]
      I. Olefjord, The passive state of stainless steels, Mater. Sci. Eng., 42(1980), p. 161.
      [16]
      I. Olefjord, B. Brox, and U. Jelvestam, Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA, J. Electrochem. Soc., 132(1985), No. 12, p. 2854.
      [17]
      J.A.L. Dobbelaar and J.H.W. de Wit, Impedance measurements and analysis of the corrosion of chromium, J. Electrochem. Soc., 137(1990), No. 7, p. 2038.
      [18]
      M. Metikoš-Huković and R. Babić, Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy, Corros. Sci., 49(2007), No. 9, p. 3570.
      [19]
      M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, and G. Sundholm, Conduction mechanism of the anodic film on chromium in acidic sulphate solutions, Electrochim. Acta, 44(1998), No. 2-3, p. 247.
      [20]
      H.H. Uhlig, Fundamental factors in corrosion control, Corrosion, 4(1947), No. 3, p. 173.
      [21]
      H.H. Uhlig, Passivity in metals and alloys, Corros. Sci., 19(1979), No. 7, p. 777.
      [22]
      V.M. Kolotyrkin, Electrochemical behaviour and anodic passivity mechanism of certain metals in electrolyte solutions, Z. Elektrochem., 62(1958), No. 6-7, p. 664.
      [23]
      R.D. Armstrong, M. Henderson, and H.R. Thirsk, The impedance of chromium in the active-passive transition, J. Electroanal. Chem. Interfacial Electrochem., 35(1972), No. 1, p. 119.
      [24]
      M.S. El-Basiouny and S. Haruyama, The polarization behaviour of chromium in acidic sulphate solutions, Corros. Sci., 17(1977), No. 5, p. 405.
      [25]
      M. Okuyama, M. Kawakami, and K. Ito, Anodic dissolution of chromium in acidic sulphate solutions, Electrochim. Acta, 30(1985), No. 6, p. 757.
      [26]
      L. Björnkvist and I. Olefjord, The electrochemistry of chromium in acidic chloride solutions: Anodic dissolution and passivation, Corros. Sci., 32(1991), No. 2, p. 231.
      [27]
      M. Seo, R. Saito, and N. Sato, Ellipsometry and auger analysis of chromium surfaces passivated in acidic and neutral aqueous solutions, J. Electrochem. Soc., 127(1980), No. 9, p. 1909.
      [28]
      T.P. Moffat and R.M. Latanision, An electrochemical and X-Ray photoelectron spectroscopy study of the passive state of chromium, J. Electrochem. Soc., 139(1992), No. 7, p. 1869.
      [29]
      B. Stypula and J. Banaś, Passivity of chromium in sulphuric acid solutions, Electrochim. Acta, 38(1993), No. 15, p. 2309.
      [30]
      V. Maurice, W.P. Yang, and P. Marcus, XPS and STM Investigation of the passive film formed on Cr(110) single-crystal surfaces, J. Electrochem. Soc., 141(1994), No. 11, p. 3016.
      [31]
      D. Zuili, V. Maurice, and P. Marcus, In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr(110) single-crystal surfaces, J. Phys. Chem. B, 103(1999), No. 37, p. 7896.
      [32]
      H. Ma, X.Q. Chen, R.H. Li, S.L. Wang, J.H. Dong, and W. Ke, First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments, Acta Mater., 130(2017), p. 137.
      [33]
      N. Sato, An overview on the passivity of metals, Corros. Sci., 31(1990), p. 1.
      [34]
      J.L. Lv and T.X. Liang, The effect of passivated potential on the passive films formed on pure chromium in borate buffer solution, Surf. Interface Anal., 49(2017), No. 6, p. 533.
      [35]
      C.O. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093.
      [36]
      J.A.L. Dobbelaar and J.H.W. de Wit, The corrosion behavior of polycrystalline and single crystal chromium a revised model, J. Electrochem. Soc., 139(1992), No. 3, p. 716.
      [37]
      D. Caplan and G.I. Sproule, Effect of oxide grain structure on the high-temperature oxidation of Cr, Oxid. Met., 9(1975), No. 5, p. 459.
      [38]
      M. Liu, D. Qiu, M.C. Zhao, G.L. Song, and A. Atrens, The effect of crystallographic orientation on the active corrosion of pure magnesium, Scripta Mater., 58(2008), No. 5, p. 421.
      [39]
      G.L. Song and Z.Q. Xu, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution, Corros. Sci., 54(2012), p. 97.
      [40]
      L.D. Chen, J.K. Nørskov, and A.C. Luntz, Al-Air batteries: Fundamental thermodynamic limitations from first-principles theory, J. Phys. Chem. Lett., 6(2015), No. 1, p. 175.
      [41]
      L.D. Chen, J.K. Nørskov, and A.C. Luntz, Theoretical limits to the anode potential in aqueous Mg–air batteries, J. Phys. Chem. C, 119(2015), No. 34, p. 19660.
      [42]
      J.S. Hummelshoj, A.C. Luntz, and J.K. Nørskov, Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry, J. Chem. Phys., 138(2013), art. No. 034703.
      [43]
      V. Viswanathan, J.K. Norskov, A. Speidel, R. Scheffler, S. Gowda, and A.C. Luntz, Li–O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory, J. Phys. Chem. Lett., 4(2013), No. 4, p. 556.
      [44]
      J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 108(2004), No. 46, p. 17886.
      [45]
      J. Rossmeisl, J.K. Nørskov, C.D. Taylor, M.J. Janik, and M. Neurock, Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111), J. Phys. Chem. B, 110(2006), No. 43, p. 21833.
      [46]
      S. Meng, E.G. Wang, and S.W. Gao, Water adsorption on metal surfaces: a general picture from density functional theory studies, Phys. Rev. B, 69(2004), art. No. 195404.
      [47]
      A. Michaelides and K. Morgenstern, Ice nanoclusters at hydrophobic metal surfaces, Nat. Mater., 6(2007), p. 597.
      [48]
      G.S. Karlberg, J. Rossmeisl, and J.K. Nørskov, Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory, Phys. Chem. Chem. Phys., 9(2007), No. 37, p. 5158.
      [49]
      P. Giannozzi, S. Baroni, N. Bonini, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21(2009), No. 39, art. No. 395502.
      [50]
      S.R. Bahn and K.W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code, Comput. Sci. Eng., 4(2002), No. 3, p. 56.
      [51]
      D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41(1990), p. 7892.
      [52]
      B. Hammer, L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59(1999), p. 7413.
      [53]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), p. 5188.
      [54]
      S. Siahrostami, V. Tripkovic, K.T. Lundgaard, K.E. Jensen, H.A. Hansen, J.S. Hummelshøj, J.S.G. Mýrdal, T. Vegge, J.K. Nørskov, and J. Rossmeisl, First principles investigation of zinc-anode dissolution in zinc-air batteries, Phys. Chem. Chem. Phys., 15(2013), No. 17, p. 6416.
      [55]
      H.A. Hansen, J. Rossmeisl, and J.K. Nørskov, Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT, Phys. Chem. Chem. Phys., 10(2008), p. 3722.
      [56]
      S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data, 18(1989), p. 1.
      [57]
      J.K. Nørskov, F. Studt, F. Abild-Pedersen, and T. Bligaard, Fundamental Concepts in Heterogeneous Catalysis, John Wiley & Sons, USA, 2014.

    Catalog


    • /

      返回文章
      返回