Cite this article as: |
Kaouther Zaara, Mahmoud Chemingui, Virgil Optasanu, and Mohamed Khitouni, Solid solution evolution during mechanical alloying in Cu-Nb-Al compounds, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1129-1139. https://doi.org/10.1007/s12613-019-1820-y |
Virgil Optasanu E-mail: virgil.optasanu@u-bourgogne.fr
[1] |
J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metall. Trans., 1(1970), No. 10, p. 2943.
|
[2] |
A.R. Yavari, P.J. Desré, and T. Banameur, Mechanically driven alloying of immiscible elements, Phys. Rev. Lett., 68(1992), No. 14, p. 2235.
|
[3] |
K. Uenishi, K.F. Kobayashi, S. Nasu, H. Hatano, K.N. Ishibara, and P.H. Shingu, Mechanical alloying in the Fe-Cu system, Z. Metallkd., 83(1992), No. 2, p. 132.
|
[4] |
J. Kuyama, H. Inui, S. Imaoka, K.N. Ishihara, and P.H. Shinhu, Nanometer-sized crystals formed by the mechanical alloying in the Ag-Fe system, Jpn. J. Appl. Phys., 30(1991), No. 5A, p. L854.
|
[5] |
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1-2, p. 1.
|
[6] |
M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, Noyes Publications/William Andrew Publishing, Norwich, N.Y., 2001, p. 154.
|
[7] |
M.S. Khoskhoo, S. Scudinio, J. Thomas, K.B. Sureddi, and J. Eckert, Grain and crystalline size evaluation of cryomilled pure copper, J. Alloys Compd., 509(2011), p. S343.
|
[8] |
H. Abdoli, H. Farnoush, E. Salahi, and K. Pourazrang, Study of the densification of a nanostructured composite powder Part 1:effect of compaction pressure and reinforcement addition, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 580.
|
[9] |
J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, and A.K. Basu, Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling, Mater. Res. Bull., 43(2008), No. 4, p. 1023.
|
[10] |
J. Torrens-Serra, I. Peral, J. Rodriguez-Viejo, and M.T. Clavaguera-Mora, Microstructure evolution and grain size distribution in nanocrystalline FeNbBCu from synchrotron XRD and TEM analysis, J. Non-Cryst. Solids, 358(2012), No. 1, p. 107.
|
[11] |
F. Hadef, A. Otomani, A. Djekoun, and J.M. Grenèche, Structural and microstructural study of nanostructured Fe50Al40Ni10 powders produced by mechanical alloying, Mater. Charact., 62(2011), No. 8, p. 751.
|
[12] |
H. Dutta, A. Sen, J. Bhattacharjee, and S.K. Pradhan, Preparation of ternary Ti0.9Ni0.1C cermets by mechanical alloying:microstructure characterization by Rietveld method and electron microscopy, J. Alloys Compd., 493(2010), No. 1-2, p. 666.
|
[13] |
A. Inoue, Bulk amorphous alloys,[in] Amorphous and Nanocrystalline Materials, Springer, Berlin, 2001, p. 1.
|
[14] |
S.Z. Kou, L. Feng, Y.T. Ding, G.J. Xu, Z.F. Ding, and P.Q. La, Synthesis and magnetic properties of Cu-based amorphous alloys made by mechanical alloying, Intermetallics, 12(2004), No. 10-11, p. 1115.
|
[15] |
G.M. Wang, S.S. Fang, X.S. Xiao, Q. Hua, J.Z. Gu, and Y.D. Dong, Microstructure and properties of Zr65Al10Ni10Cu15 amorphous plates rolled in the supercooled liquid region, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 217.
|
[16] |
M. Gögebakan, The effect of Si addition on crystallization behaviour of amorphous Al-Y-Ni alloy, J. Mater. Eng. Perform., 13(2004), No. 4, p. 504.
|
[17] |
R.S. Lei, M.P. Wang, H.P. Wang, and S.Q. Xu, New insights on the formation of supersaturated Cu-Nb solid solution prepared by mechanical alloying, Mater. Charact., 118(2016), p. 324.
|
[18] |
M.A. Morris and D.G. Morris, Microstructure refinement and associated strength of copper alloys obtained by mechanical alloying, Mater. Sci. Eng. A, 111(1989), p. 115.
|
[19] |
A. Benghalem and D.G. Morris, Microstructure and mechanical properties of concentrated alloys prepared by mechanical alloying, Mater. Sci. Eng. A, 161(1993), No. 2, p. 255.
|
[20] |
E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, and L. Schultz, Supersaturated solid solution of niobium in copper by mechanical alloying, J. Alloys Compd., 351(2003), No. 1-2, p. 119.
|
[21] |
E. Botcharova, J. Freudenberger, and L. Schultz, Cu-Nb alloys prepared by mechanical alloying and subsequent heat treatment, J. Alloys Compd., 365(2004), No. 1-2, p. 157.
|
[22] |
S. Mula, H. Bahmanpour, S. Mal, P.C. Kang, M. Atwater, W. Jian, R.O. Scattergood, and C.C. Koch, Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability, Mater. Sci. Eng. A, 539(2012), p. 330.
|
[23] |
R.S. Lei, M.P. Wang, Z. Li, H.G. Wei, W.C. Yang, Y.L. Jia, and S. Gong, Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying,Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4475.
|
[24] |
M. Azabou, H.I. Gharsallah, L. Escoda, J.J. Suñol, A.W. Kolsi, and M. Khitouni, Mechanochemical reactions in nanocrystalline Cu-Fe system induced by mechanical alloying in air atmosphere, Powder Technol., 224(2012), p. 338.
|
[25] |
M. Khitouni, R. Daly, M. Mhadhbi, and A. Kolsi, Structural evolution in nanocristalline Cu obtained by high energy mechanical milling:phases formation of copper oxides, J. Alloys Compd., 475(2009), No. 1-2, p. 581.
|
[26] |
S.M. Yoon, C. Nagarjuna, D.W. Shin, C.H. Lee, B. Madavali, S.J. Hong, and K.H. Lee, Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying, J. Korean Powder Metall. Inst., 24(2017), No. 5, p. 357.
|
[27] |
Z.Q. Zhao, Z. Xiao, Z. Li, M.N. Zhu, and Z.Q. Yang, Characterization of dispersion strengthened copper alloy prepared by internal oxidation combined with mechanical alloying, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5641.
|
[28] |
M. do Carmo Amorim da Silva and S.J.G. de Lima, Evolution of mechanical alloying to obtain Cu-Al-Nb shape memory alloy, Mater. Res., 8(2005), No. 2, p. 169.
|
[29] |
L. Lutterotti, S. Matthies, and H. R. Wenk, MAUD:a friendly Java program for material analysis using diffraction, IUCr:Newsletter of the CPD, 21(1999), p.14.
|
[30] |
J. Eckert, J.C. Holzer, and W.L. Johnson, Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys, J. Appl. Phys., 73(1993), No. 1, p. 131.
|
[31] |
F.A. Mohamed, A dislocation model for the minimum grain size obtainable by milling, Acta Mater., 51(2003), No. 14, p. 4107.
|
[32] |
T. Bachaga, R. Daly, L. Escode, J.J. Suñol, and M. Khitouni, Amorphization of Al50(Fe2B)30Nb20 mixture by mechanical alloying, Metall. Mater. Trans. A, 44(2013), No. 10, p. 4718.
|
[33] |
M. Krifa, M. Mhadhbi, L. Escoda, J. Saurina, J.J. Suñol, N. LIorca-Isern, C. Artieda-Guzmán, and M. Khitouni, Phase transformation during mechanical alloying of Fe-30% Al-20% Cu, Powder Technol., 246(2013), p. 117.
|
[34] |
H.I. Gharsallah, T. Makhlouf, L. Escoda, J.J. Suñol, and M. Khitouni, Magnetic and microstructural proprieties of nanocrystalline Fe-25at% Al and Fe-25at% Al +0.2at% B alloys prepared by mechanical alloying process, Eur. Phys. J. Plus, 131(2016), No. 7, p. 119.
|
[35] |
S. Bergheul, H. Tafat, and M. Azzaz, Formation and magnetic properties of nanocrystalline Fe60Co40 alloys produced by mechanical alloying, J. Mater. Eng. Perform., 15(2006), No. 3, p. 349.
|
[36] |
D.Y. Ying, and D.L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 286(2000), No. 1, p. 152.
|
[37] |
M. Gherib, A. Otmani, A. Djekoun, A. Bouasla, M. Poulain, and M. Legouira, Study of nanocrystalline NiAl alloys prepared by mechanical alloying, Defect Diffus. Forum, 329(2012), p. 19.
|
[38] |
Y.C. Zhang, J.Y. Tang, G.L. Wang, M. Zhang, and X.Y. Hu, Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor, J. Cryst. Growth, 294(2006), No. 2, p. 278.
|
[39] |
M.D. Abad, S. Parker, D. Kiene, M.M. Primorac, and P. Hosemann, Microstructure and mechanical properties of CuxNb1-x alloys prepared by ball milling and high pressure torsion compacting, J. Alloys Compd., 630(2015), p. 117.
|
[40] |
W. Pfeiler, Alloy Physics:A Comprehensive Reference, John Wileys and Sons, New York, 2008.
|
[41] |
R.S. Lei, S.Q. Xu, M.P. Wang, and H.P. Wang, Microstructure and properties of nanocrystalline copper-niobium alloy with high strength and high conductivity, Mater. Sci. Eng. A, 586(2013), p. 367.
|
[42] |
M. Slimi, M. Azabou, L. Escoda, J.J. Suñol, and M. Khitouni, Stacking faults and structural characterization of mechanically alloyed Ni50Cu(Fe2B)10P30 powders, Eur. Phys. J. Plus, 130(2015), No. 4, p. 72.
|
[43] |
S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray peak broadening analysis of AA 6061100-x-x wt.% Al2O3 nanocomposite prepared by mechanical alloying, Mater. Charact., 62(2011), No. 7, p. 661.
|
[44] |
Y.H. Zhao, H.W. Sheng, and K. Lu, Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Mater., 49(2001), No. 2, p. 365.
|
[45] |
C. Slama and M. Abdellaoui, Microstructure characterization of nanocrystalline (Ti0.9W0.1) C prepared by mechanical alloying, Int. J. Refract. Met. Hard Mater., 54(2016), p. 270.
|
[46] |
M. Slimi, M. Azabou, L. Escoda, J.J. Suñol, and M. Khitouni, Structural and microstructural properties of nanocrystalline Cu-Fe-Ni powders produced by mechanical alloying, Powder Technol., 266(2014), p. 262.
|
[47] |
I. Hideaki, M. Toshiyuki, and N. Keiji, Measurement of enthalpies of formation of niobium oxides at 920 K in a Tian-Calvet-type calorimeter, J. Chem. Thermodyn., 16(1984), No. 5, p. 411.
|
[48] |
K.T. Jacob, C. Shekhar, M. Vinay, and Y. Waseda, Thermodynamic properties of niobium oxides, J. Chem. Eng. Data, 55(2010), No 11, p. 4854.
|
[49] |
R. Novakovic, Thermodynamics, surface properties and microscopic functions of liquid Al-Nb and Nb-Ti alloys, J. Non-Cryst. Solids, 356(2010), No. 31-32, p. 1593.
|