留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 10
Oct.  2019
数据统计

分享

计量
  • 文章访问数:  1070
  • HTML全文浏览量:  190
  • PDF下载量:  85
  • 被引次数: 0
Xiao-lu Yuan, Yu-ting Zheng, Xiao-hua Zhu, Jin-long Liu, Jiang-wei Liu, Cheng-ming Li, Peng Jin,  and Zhan-guo Wang, Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1195-1205. https://doi.org/10.1007/s12613-019-1843-4
Cite this article as:
Xiao-lu Yuan, Yu-ting Zheng, Xiao-hua Zhu, Jin-long Liu, Jiang-wei Liu, Cheng-ming Li, Peng Jin,  and Zhan-guo Wang, Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1195-1205. https://doi.org/10.1007/s12613-019-1843-4
引用本文 PDF XML SpringerLink
特约综述

Recent progress in diamond-based MOSFETs

  • 通讯作者:

    Cheng-ming Li    E-mail: chengmli@mater.ustb.edu.cn

    Peng Jin    E-mail: pengjin@semi.ac.cn

  • Recent developments in the use of diamond materials as metal-oxide-semiconductor field-effect transistors (MOSFETs) are introduced in this article, including an analysis of the advantages of the device owing to the unique physical properties of diamond materials, such as their high-temperature and negative electron affinity characteristics. Recent research progress by domestic and international research groups on performance improvement of hydrogen-terminated and oxygen-terminated diamond-based MOSFETs is also summarized. Currently, preparation of large-scale diamond epitaxial layers is still relatively difficult, and improvements and innovations in the device structure are still ongoing. However, the key to improving the performance of diamond-based MOSFET devices lies in improving the mobility of channel carriers. This mainly includes improvements in doping technologies and reductions in interface state density or carrier traps. These will be vital research goals for the future of diamond-based MOSFETs.
  • Invited Review

    Recent progress in diamond-based MOSFETs

    + Author Affiliations
    • Recent developments in the use of diamond materials as metal-oxide-semiconductor field-effect transistors (MOSFETs) are introduced in this article, including an analysis of the advantages of the device owing to the unique physical properties of diamond materials, such as their high-temperature and negative electron affinity characteristics. Recent research progress by domestic and international research groups on performance improvement of hydrogen-terminated and oxygen-terminated diamond-based MOSFETs is also summarized. Currently, preparation of large-scale diamond epitaxial layers is still relatively difficult, and improvements and innovations in the device structure are still ongoing. However, the key to improving the performance of diamond-based MOSFET devices lies in improving the mobility of channel carriers. This mainly includes improvements in doping technologies and reductions in interface state density or carrier traps. These will be vital research goals for the future of diamond-based MOSFETs.
    • loading
    • [1]
      L. Reggiani, S. Bosi, C. Canali, F. Nava, and S.F. Kozlov, Hole-drift velocity in natural diamond, Phys. Rev. B, 23(1981), No. 6, p. 3050.
      [2]
      J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, and G.A. Scarsbrook, High carrier mobility in single-crystal plasma-deposited diamond, Science, 297(2002), No. 5587, p. 1670.
      [3]
      C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1-2, p. 22.
      [4]
      S. Shikata, Single crystal diamond wafers for high power electronics, Diamond Relat. Mater., 65(2016), p. 168.
      [5]
      H. Umezawa, M. Nagase, Y. Kato, and S. Shikata, High temperature application of diamond power device, Diamond Relat. Mater., 24(2012), p. 201.
      [6]
      H. Kawarada, T. Yamada, D. Xu, H. Tsuboi, Y. Kitabayashi, D. Matsumura, M. Shibata, T. Kudo, M. Inaba, and A. Hiraiwa, Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications, Sci. Rep., 7(2017), art. No. 42368.
      [7]
      S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, New Jersey, 2006.
      [8]
      B.J. Baliga, Fundamentals of Power Semiconductor Device, Springer, Boston, MA, 2008.
      [9]
      J.B. Cui, J. Ristein, and L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface, Phys. Rev. Lett., 81(1998), No. 2, p. 429.
      [10]
      K.G. Crawford, L. Cao, D. Qi, A. Tallaire, E. Limiti, C. Verona, A.T.S. Wee, and D.A.J. Moran, Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability, Appl. Phys. Lett., 108(2016), No. 4, art. No. 042103.
      [11]
      M. Kasu, Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation, Jpn. J. Appl. Phys., 56(2016), No. 1S, art. No. 01AA01.
      [12]
      M. Kasu, K. Hirama, K. Harada, and T. Oishi, Study on capacitance-voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer, Jpn. J. Appl. Phys., 55(2016), No. 4, art. No. 041301.
      [13]
      F. Maier, M. Riedel. B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85(2000), No. 16, p. 3472.
      [14]
      J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Electrical characteristics of hydrogen-terminated diamond metal-oxide-semiconductor with atomic layer deposited HfO2 as gate dielectric, Appl. Phys. Lett., 102(2013), No. 11, art. No. 112910.
      [15]
      M. Syamsul, Y. Kitabayashi, D. Matsumura, T. Saito, Y. Shintani, and H. Kawarada, High voltage breakdown (1.8 kV) of hydrogenated black diamond field effect transistor, Appl. Phys. Lett., 109(2016), No. 20, art. No. 203504.
      [16]
      H. Kawarada, T. Yamada, D. Xu, Y. Kitabayashi, M. Shibata, D. Matsumura, M. Kobayashi, T. Saito, T. Kudo, M. Inaba, and A. Hiraiwa, Diamond MOSFETs using 2D hole gas with 1700V breakdown voltage,[in] Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Munich, 2016, p. 483.
      [17]
      Y. Kitabayashi, T. Kudo, H. Tsuboi, T. Yamada, D. Xu, M. Shibata, D. Matsumura, Y. Hayashi, M. Syamsul, M. Inaba, A. Hiraiwa, and H. Kawarada, Normally-off C–H diamond MOSFETs with partial C–O channel achieving 2kV breakdown voltage, IEEE Elect. Dev. Lett., 38(2017), No. 3, p. 363.
      [18]
      D. Takeuchi, H. Kato, G.S. Ri, T. Yamada, P.R. Vinod, D. Hwang, C.E. Nebel, H. Okushi, and S. Yamasaki, Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces, Appl. Phys. Lett., 86(2005), No. 15, art. No. 152103.
      [19]
      G.S. Gildenblat, S.A. Grot, C.W. Hatfield, and A.R. Badzian, High-temperature thin-film diamond field-effect transistor fabricated using a selective growth method, IEEE Elect. Dev. Lett., 12(1991), No. 2, p. 37.
      [20]
      M. Aoki and H. Kawarada, Electric properties of metal/diamond interfaces utilizing hydrogen-terminated surfaces of homoepitaxial diamonds, Jpn. J. Appl. Phys., 33(1994), No. 5B, p. L708.
      [21]
      K.K. Kovi, Ö. Vallin, S. Majdi, and J. Isberg, Inversion in metal-oxide-semiconductor capacitors on boron-doped diamond, IEEE Elect. Dev. Lett., 36(2015), No. 6, p. 603.
      [22]
      J.L. Liu, L.X. Chen, Y.T. Zheng, J.T. Wang, Z.H. Feng, and C.M. Li, Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 850.
      [23]
      M. Imura, R. Hayakawa, H. Ohsato, E. Watanabe, D. Tsuya, T. Nagata, M.Y. Liao, Y. Koide, J. Yamamoto, K. Ban, M. Iwaya, and H. Amano, Development of AlN/diamond heterojunction field effect transistors, Diamond Relat. Mater., 24(2012), p. 206.
      [24]
      J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, and Y. Koide, Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors, J. Appl. Phys., 114(2013), No. 8, art. No. 084108.
      [25]
      J.W. Liu, M.Y. Liao, M. Imura, E. Watanabe, H. Oosato, and Y. Koide, Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material, J. Phys. D, 47(2014), No. 24, art. No. 245102.
      [26]
      J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric, Sci. Rep., 4(2014), art. No. 6395.
      [27]
      J.W. Liu, H. Oosato, M.Y. Liao, and Y. Koide, Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator, Appl. Phys. Lett., 110(2017), No. 20, art. No. 203502.
      [28]
      J.W. Liu, M.Y. Liao, M. Imura, R.G. Banal, and Y. Koide, Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters, J. Appl. Phys., 121(2017), No. 22, art. No. 224502.
      [29]
      J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors, J. Appl. Phys., 120(2016), No. 12, art. No. 124504.
      [30]
      J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond, Diamond Relat. Mater., 54(2015), p. 55.
      [31]
      R.G. Banal, M. Imura, J.W. Liu, and Y. Koide, Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors, J. Appl. Phys., 120(2016), No. 11, art. No. 115307.
      [32]
      J.W. Liu, M.Y. Liao, M. Imura, T. Matsumoto, N. Shibata, Y. Ikuhara, and Y. Koide, Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors, J. Appl. Phys., 118(2015), No. 11, art. No. 115704.
      [33]
      S. Russell, S. Sharabi, A. Tallaire, and D.A.J. Moran, RF operation of hydrogen-terminated diamond field effect transistors: a comparative study, IEEE Trans. Electron Devices, 62(2015), No. 3, p. 751.
      [34]
      J.W. Liu, H. Ohsato, M.Y. Liao, M. Imura, E. Watanabe, and Y. Koide, Logic circuits with hydrogenated diamond field-effect transistors, IEEE Electron Devices Lett., 38(2017), No. 7, p. 922.
      [35]
      M.Y. Liao, J.W. Liu, L.W. Sang, D. Coathup, J.L. Li, M. Imura, Y. Koide, and H.T. Ye, Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures, Appl. Phys. Lett., 106(2015), No. 8, art. No. 083506.
      [36]
      H.Y. Wong, N. Braga, and R.V. Mickevicius, Prediction of highly scaled hydrogen-terminated diamond MISFET performance based on calibrated TCAD simulation, Diamond Relat. Mater., 80(2017), p. 14.
      [37]
      H.Y. Wong, N. Braga, and R.V. Mickevicius, A physical model of the abnormal behavior of hydrogen-terminated Diamond MESFET,[in] 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, 2017, p. 333.
      [38]
      Y. Fu, R.M. Xu, Y.H. Xu, J.J. Zhou, Q.Z. Wu, Y.C. Kong, Y. Zhang, T.S. Chen, and B. Yan, Characterization and modeling of hydrogen-terminated MOSFETs with single-crystal and polycrystalline diamond, IEEE Electron Devices Lett., 39(2018), No. 11, p. 1704.
      [39]
      Y. Fu, Y.H. Xu, R.M. Xu, J.J. Zhou, and Y.C. Kong, Physical-based simulation of DC characteristics of hydrogen-terminated diamond MOSFETs,[in] 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 2017, p. 1.
      [40]
      K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, and S.E. Coe, Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz, IEEE Electron Devices Lett., 27(2006), No. 7, p. 570.
      [41]
      J.J. Wang, Z.Z. He, C. Yu, X.B. Song, P. Xu, P.W. Zhang, H. Guo, J.L. Liu, C.M. Li, S.J. Cai, and Z.H. Feng, Rapid deposition of polycrystalline diamond film by DC arc plasma jet technique and its RF MESFETs, Diamond Relat. Mater., 43(2014), p. 43.
      [42]
      T.T. Pham, A. Maréchal, P. Muret, D. Eon, E. Gheeraert, N. Rouger, and J. Pernot, Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance, J. Appl. Phys., 123(2018), No. 16, art. No. 161523.
      [43]
      T.T. Pham, J. Pernot, G. Perez, D. Eon, E. Gheeraert, and N. Rouger, Deep-depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor, IEEE Electron Devices Lett., 38(2017), No. 11, p. 1571.
      [44]
      T.T. Pham, N. Rouger, C. Masante, G. Chicot, F. Udrea, D. Eon, E. Gheeraert, and J. Pernot, Deep depletion concept for diamond MOSFET, Appl. Phys. Lett., 111(2017), No. 17, art. No. 173503.
      [45]
      T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, and S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics, Sci. Rep., 6(2016), art. No. 31585.
      [46]
      T. Matsumoto, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, M. Imura, A. Ueda, T. Inokuma, and N. Tokuda, Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer, Jpn. J. Appl. Phys., 57(2018), No. 4S, art. No. 04FR01.
      [47]
      A. Maréchal, M. Aoukar, C. Vallée, C. Rivière, D. Eon, J. Pernot, and E. Gheeraert, Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor, Appl. Phys. Lett., 107(2015), No. 14, art. No. 141601.
      [48]
      J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, Band offsets of Al2O3 and HfO2 oxides deposited by atomic layer deposition technique on hydrogenated diamond, Appl. Phys. Lett., 101(2012), No. 25, art. No. 252108.
      [49]
      T.T. Pham, M. Gutiérrez, C. Masante, N. Rouger, D. Eon, E. Gheeraert, D. Araùjo, and J. Pernot, High quality Al2O3/(100) oxygen-terminated diamond interface for MOSFETs fabrication, Appl. Phys. Lett., 112(2018), No. 10, art. No. 102103.
      [50]
      A. Tallaire, J. Achard, F. Silva, O. Brinza, and A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges, C. R. Phys., 14(2013), No. 2-3, p. 169.
      [51]
      H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, A 2-in. mosaic wafer made of a single-crystal diamond, Appl. Phys. Lett., 104(2014), No. 10, art. No. 102110.
      [52]
      M. Schreck, S. Gsell, R. Brescia, and M. Fischer, Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers, Sci. Rep., 7(2017), art. No. 44462.
      [53]
      S. Koizumi, H. Umezawa, J. Pernot, amd M. Suzuki, Power Electronics Device Applications of Diamond Semiconductors, Woodhead Publishing, Cambridge, 2018, p. 383.
      [54]
      S. Bohr, R. Haubner, and B. Lux, Influence of phosphorus addition on diamond CVD, Diamond Relat. Mater., 4(1995), No. 2, p. 133.
      [55]
      S.N. Demlow, R. Rechenberg, and T. Grotjohn, The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond, Diamond Relat. Mater., 49(2014), p. 19.
      [56]
      T. Matsumoto, H. Kato, N. Tokuda, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, and S. Yamasaki, Reduction of n-type diamond contact resistance by graphite electrode, Phys. Status Solidi RRL, 8(2014), No. 2, p. 137.
      [57]
      S. Mi, A. Toros, T. Graziosi and N. Quack, Non-contact polishing of single crystal diamond by ion beam etching, Diamond Relat. Mater., 92(2019), p. 248.
      [58]
      F.N. Li, J.W. Liu, J.W. Zhang, X.L. Wang, W. Wang, Z.C. Liu, and H.X. Wang, Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 370(2016), p. 496.
      [59]
      F. Li, J. Zhang, X. Wang, Z. Liu, W. Wang, S. Li, and H.X. Wang, X-ray photoelectron spectroscopy study of Schottky junctions based on oxygen-/fluorine-terminated (100) diamond, Diamond Relat. Mater., 63(2016), p. 180.
      [60]
      J. Wang, G. Wang, D. Wang, S. Li, and P. Zeng, A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam, Sci. Rep., 8(2018), No. 1, art. No. 6978.

    Catalog


    • /

      返回文章
      返回