留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 9
Sep.  2019
数据统计

分享

计量
  • 文章访问数:  525
  • HTML全文浏览量:  82
  • PDF下载量:  14
  • 被引次数: 0
Chang-qing Huang, Jia-xing Liu, and Xiao-dong Jia, Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1140-1150. https://doi.org/10.1007/s12613-019-1852-3
Cite this article as:
Chang-qing Huang, Jia-xing Liu, and Xiao-dong Jia, Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1140-1150. https://doi.org/10.1007/s12613-019-1852-3
引用本文 PDF XML SpringerLink
研究论文

Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy

  • 通讯作者:

    Chang-qing Huang    E-mail: huangcq64@csu.edu.cn

  • The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simulations and electron-backscattered diffraction and Vickers microhardness experiments. The results of a misorientation angle study show that an increase in the deformation temperature and strain rate promoted the transformation of low-angle grain boundaries to high-angle grain boundaries, which contributed to dynamic recrystallization. The effect of the deformation parameters on the texture and its evolution during the recrystallization process was explored on the basis of the orientation distribution function. The results demonstrate that the deformed samples mainly exhibited the features of type A, B, and B textures. The formation and growth of the recrystallized grains clearly affected the texture evolution. The microhardness results show that the variation of the microhardness was closely related to the temperature, strain rate, and dynamic recrystallization.
  • Research Article

    Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy

    + Author Affiliations
    • The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simulations and electron-backscattered diffraction and Vickers microhardness experiments. The results of a misorientation angle study show that an increase in the deformation temperature and strain rate promoted the transformation of low-angle grain boundaries to high-angle grain boundaries, which contributed to dynamic recrystallization. The effect of the deformation parameters on the texture and its evolution during the recrystallization process was explored on the basis of the orientation distribution function. The results demonstrate that the deformed samples mainly exhibited the features of type A, B, and B textures. The formation and growth of the recrystallized grains clearly affected the texture evolution. The microhardness results show that the variation of the microhardness was closely related to the temperature, strain rate, and dynamic recrystallization.
    • loading
    • [1]
      M.A.J. Taleghani, E.M.R. Navas, M. Salehi, and J.M. Torralba, Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures, Mater. Sci. Eng. A, 534(2012), p. 624.
      [2]
      J.Y. Park, S.H. Hong, and D.N. Lee, Analysis of deformation and recrystallization textures of shear deformed 1050 aluminum alloy, Mater. Sci. Forum, 408-412(2002), No. 4, p. 1431.
      [3]
      W.C. Liu and J.G. Morris, Effect of initial texture on the recrystallization texture of cold rolled AA 5182 aluminum alloy, Mater. Sci. Eng. A, 402(2005), No. 1-2, p. 215.
      [4]
      P.P. Bhattacharjee, R.K. Ray, and N. Tsuji, Cold rolling and recrystallization textures of a Ni-5 at.% W alloy, Acta Mater., 57(2009), No. 7, p. 2166.
      [5]
      Q. Liu, D.J. Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater., 46(1998), No. 16, p. 5819.
      [6]
      O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-a review, Mater. Sci. Eng. A, 336(2002), No. 1-2, p. 249.
      [7]
      L.H. Liao, X.F. Zheng, Y.L. Kang, W. Liu, Y. Yan, and Z.Y. Mo, Crystallographic texture and earing behavior analysis for different second cold reductions of double-reduction tinplate, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 652.
      [8]
      O. Engler, M. Crumbach, and S. Li, Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model, Acta Mater., 53(2005), No. 8, p. 2241.
      [9]
      H.O. Asbeck and H. Mecking, Influence of friction and geometry of deformation on texture inhomogeneities during rolling of Cu single crystals as an example, Mater. Sci. Eng., 34(1978), No. 2, p. 111.
      [10]
      J.N. Qin, D. Zhang, G.D. Zhang, and J.C. Lee, Effect of temperature on texture formation of 6061 aluminum sheet in equal-channel angular pressing, Mater. Sci. Eng. A., 408(2005), No. 1-2, p. 79.
      [11]
      K. Abib, J.A.M. Balanos, B. Alili, and D. Bradai, On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP, Mater. Charact., 112(2016), p. 252.
      [12]
      M. Kuroda and S. Ikawa, Texture optimization of rolled aluminum alloy sheets using a genetic algorithm, Mater. Sci. Eng. A., 385(2004), No. 1-2, p. 235.
      [13]
      Y. Zhang, X.P. Wang, F.T. Kong, L.L. Sun, and Y.Y. Chen, Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures, J. Alloys Compd., 777(2019), p. 795.
      [14]
      P. Angerer, E. Neubauer, L.G. Yu, and K.A. Khor, Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing, Int. J. Refract. Met. Hard Mater., 25(2007), No. 4, p. 280.
      [15]
      X.M. Duan, D.C. Jia, Z.L. Wu, Z. Tian, Z.H. Yang, S.J. Wang, and Y. Zhou, Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics, Scripta Mater., 68(2013), No. 2, p. 104.
      [16]
      J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, and R.S. Chen, Unusual cold rolled texture in an Mg-2.0Zn-0.8Gd sheet, Scripta Mater., 127(2017), p. 146.
      [17]
      R. Singh, R.K. Khatirkar, R.N. Chouhan, and S.G. Sapate, Development of cube recrystallization texture in strip cast AA3004 aluminium alloy, Trans. Indian Inst. Met., 69(2016), No. 10, p. 1833.
      [18]
      H.T. Liu, Z.Y. Liu, Y. Sun, Y.Q. Qiu, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, and G.D. Wang, Formation of {001} <510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel, Mater. Lett., 81(2012), p. 65.
      [19]
      V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, and S.K. Mishra, Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet, Mater. Sci. Eng. A., 679(2017), p. 56.
      [20]
      J.Q. Duan, M.Z. Quadir, W. Xu, C. Kong, and M. Ferry, Texture balancing in a fcc/bcc multilayered composite produced by accumulative roll bonding, Acta Mater., 123(2017), p. 11.
      [21]
      H.T. Liu, H.L. Li, H. Wang, Y. Liu, F. Gao, L.Z. An, S.Q. Zhao, Z.Y. Liu, and G.D. Wang, Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel, J. Magn. Magn. Mater., 406(2016), p. 149.
      [22]
      X.B. Liu, F.B. Qiao, L.J. Guo, and X.E. Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 164.
      [23]
      J. de Paula Martins, A.L.M. de Carvalho, and A.F. Padilha, Texture analysis of cold rolled and annealed aluminum alloy produced by twin-roll casting, Mater. Res., 15(2012), No. 1, p. 97.
      [24]
      D.Q. Xin, C.X. He, X.H. Gong, H. Wang, L. Meng, G. Ma, P.F. Hou, and W.K. Zhang, Monte Carlo study on abnormal growth of Goss grains in Fe-3%Si steel induced by second-phase particles, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1397.
      [25]
      X.H. Yue, C.F. Liu, H.H. Liu, S.F. Xiao, Z.H. Tang, and T. Tang, Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 236.
      [26]
      Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD study of a hot deformed nickel-based superalloy, J. Alloys Compd., 640(2015), p. 101.
      [27]
      K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548.
      [28]
      P.R. Rios, S. Fulvio Jr, H.R.Z. Sandim, R.L. Plaut, and A.F. Padilha, Nucleation and growth during recrystallization, Mater. Res., 8(2005), No. 3, p. 225.
      [29]
      X. Huang, K. Suzuki, and Y. Chino, Static recrystallization behavior of hot-rolled Mg-Zn-Ce magnesium alloy sheet, J. Alloys Compd., 724(2017), p. 981.
      [30]
      P. Li, X. Wang, K.M. Xue, Y. Tian, and Y.C. Wu, Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion, Int. J. Refract. Met. Hard Mater., 54(2016), p. 439.
      [31]
      J.B. Liu, X.H. Liu, W. Liu, Y.W. Zeng, and K.Y. Shu, Microstructure and hardness evolution during isothermal process at 700 degrees C for Fe-24Mn-0.7Si-1.0Al TWIP steel, Mater. Charact., 61(2010), No. 12, p. 1356.
      [32]
      Z.J. Shao, H.P. Liu, X.C. He, B. Zhou, Y. Li, S.Z. Zhang, M.J. Li, and S.J. Li, Microstructure and finite element analysis of hot continuous rolling of doped tungsten rod, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 369.

    Catalog


    • /

      返回文章
      返回