留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 3
Mar.  2020

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1964
  • HTML全文浏览量:  309
  • PDF下载量:  78
  • 被引次数: 0
Gai-rong Wang, Hong-ying Yang, Yuan-yuan Liu, Lin-lin Tong, and Ali Auwalu, Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 292-300. https://doi.org/10.1007/s12613-019-1856-z
Cite this article as:
Gai-rong Wang, Hong-ying Yang, Yuan-yuan Liu, Lin-lin Tong, and Ali Auwalu, Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 292-300. https://doi.org/10.1007/s12613-019-1856-z
引用本文 PDF XML SpringerLink
研究论文

赞比亚卢安西亚矿区复杂铜矿孔雀石的机械活化及浸出研究

  • Research Article

    Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia

    + Author Affiliations
    • Mechanical activation (MA) of malachite was carried out by dry planetary grinding (DPG) and wet Isa grinding (WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 μm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG. However, no agglomeration was observed among particles with sizes 0.4–3 μm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared (FT-IR) spectra of activated malachite, the bands associated with –OH, ${\rm CO}_3^{2-} $and metal lattice vibrations of Cu–O and Cu–OH were weakened, and a new H–O–H bending mode and peaks of gaseous CO2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite. Furthermore, the leaching behavior of copper ore was greatly improved by MA.
    • loading
    • [1]
      Y.Q. Zhao, Treatment of Copper Oxide Ore, The Metallurgical Industry Press, Beijing, 1982.
      [2]
      O.N. Ata, S. Çolak, Z. Ekinci, and M. Çopur, Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions, Chem. Eng. Technol., 24(2001), No. 4, p. 409. doi: 10.1002/1521-4125(200104)24:4<409::AID-CEAT409>3.0.CO;2-0
      [3]
      J.S. Deng, S.M. Wen, Q. Yin, D.D. Wu, and Q.W. Sun, Leaching of malachite using 5-sulfosalicylic acid, J. Taiwan Inst. Chem. Eng., 71(2017), p. 20. doi: 10.1016/j.jtice.2016.11.013
      [4]
      D. Bingöl and M. Canbazoğlu, Dissolution kinetics of malachite in sulphuric acid, Hydrometallurgy, 72(2004), No. 1-2, p. 159. doi: 10.1016/j.hydromet.2003.10.002
      [5]
      D. Bingöl, M. Canbazoğlu, and S. Aydoğan, Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching, Hydrometallurgy, 76(2005), No. 1-2, p. 55. doi: 10.1016/j.hydromet.2004.09.006
      [6]
      A. Künkül, M.M. Kocakerim, S. Yapici, and A. Demirbaǧ, Leaching kinetics of malachite in ammonia solutions, Int. J. Miner. Process., 41(1994), No. 3-4, p. 167. doi: 10.1016/0301-7516(94)90026-4
      [7]
      X. Wang, Q.Y. Chen, H.P. Hu, Z.L. Yin, and Z.L. Xiao, Solubility prediction of malachite in aqueous ammoniacal ammonium chloride solutions at 25°C, Hydrometallurgy, 99(2009), No. 3-4, p. 231. doi: 10.1016/j.hydromet.2009.08.011
      [8]
      K.B. Fu, H. Lin, Y.B. Dong, X.L. Mo, and H. Wang, The rules of bacteria in malachite leaching of low acidity, Met. Mine, 40(2011), No. 3, p. 69.
      [9]
      R.J. Ma, New development of hydrometallurgy, Hydrometall. China, 26(2007), No. 1, p. 1.
      [10]
      K. Tkáčová, P. Baláž, B. Mišura, V.E. Vigdergauz, and V.A. Chanturiya, Selective leaching of zinc from mechanically activated complex Cu Pb Zn concentrate, Hydrometallurgy, 33(1993), No. 3, p. 291. doi: 10.1016/0304-386X(93)90068-O
      [11]
      C. Zhang, Study on Mechanochemical Calorimeter and Mechanochemical Energy [Dissertation], Central South University, Changsha, 2008.
      [12]
      P. Baláž, Influence of solid state properties on ferric chloride leaching of mechanically activated galena, Hydrometallurgy, 40(1996), No. 3, p. 359. doi: 10.1016/0304-386X(95)00011-5
      [13]
      P. Baláž, Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam, 2000.
      [14]
      D. Tromans and J.A. Meech, Enhanced dissolution of minerals: microtopography and mechanical activation, Miner. Eng., 12(1999), No. 6, p. 609. doi: 10.1016/S0892-6875(99)00047-3
      [15]
      N.J. Welham, Enhanced dissolution of tantalite/columbite following milling, Int. J. Miner. Process., 61(2001), No. 3, p. 145. doi: 10.1016/S0301-7516(00)00032-6
      [16]
      P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, Heidelberg, 2008.
      [17]
      M.W. Gao, R.J. Holmes, and J. Pease, The latest developments in fine and ultrafine grinding technologies, [in] 23rd International Mineral Processing Congress, Istanbul, 2006, p. 30.
      [18]
      P. Baláž, M. Baláž, O. Shpotyuk, P. Demchenko, M. Vlček, M. Shopska, J. Briančin, Z. Bujňáková, Y. Shpotyuk, B. Selepová, and L. Balážová, Properties of arsenic sulphide (β-As4S4) modified by mechanical activation, J. Mater. Sci., 52(2017), No. 3, p. 1747. doi: 10.1007/s10853-016-0466-7
      [19]
      R.A. Kleiv and M. Thornhill, The effect of mechanical activation in the production of olivine surface area, Miner. Eng., 89(2016), p. 19. doi: 10.1016/j.mineng.2016.01.003
      [20]
      K. Tkáčová and N. Stevulová, Change in structure and enthalpy of carbonates and quartz accompanying grinding in air and aqueous environments, Powder Technol., 52(1987), No. 2, p. 161. doi: 10.1016/0032-5910(87)80146-8
      [21]
      T. Tunç and K. Yildiz, Structural alterations in mechanically activated malachite, Acta Phys. Pol. A, 125(2014), No. 2, p. 177. doi: 10.12693/APhysPolA.125.177
      [22]
      G.R. Wang, H.Y. Yang, L.L. Tong, and Y.Y. Liu, Research on process mineralogy of oxidized copper ore in Luanshya, Zambia, J. Northeastern Univ. Nat. Sci., 40(2019), No. 3, p. 350.
      [23]
      R. Mejdoub, H. Hammi, M. Khitouni, J.J. Suñol, and A. M'nif, The effect of prolonged mechanical activation duration on the reactivity of portland cement: Effect of particle size and crystallinity changes, Constr. Build. Mater., 152(2017), p. 1041. doi: 10.1016/j.conbuildmat.2017.07.008
      [24]
      S. Romeis, J. Schmidt, and W. Peukert, Mechanochemical aspects in wet stirred media milling, Int. J. Miner. Process., 156(2016), p. 24. doi: 10.1016/j.minpro.2016.05.018
      [25]
      P. Pourghahramani, E. Altin, M.R. Mallembakam, W. Peukert, and E. Forssberg, Microstructural characterization of hematite during wet and dry millings using rietveld and xrd line profile analyses, Powder Technol., 186(2008), No. 1, p. 9. doi: 10.1016/j.powtec.2007.10.027
      [26]
      S.M. Ohlberg and D.W. Strickler, Determination of percent crystallinity of partly devitrified glass by X-ray diffraction, J. Am. Ceram. Soc., 45(1962), No. 4, p. 170. doi: 10.1111/j.1151-2916.1962.tb11114.x
      [27]
      J.A. Goldsmith and S.D. Ross, The infra-red spectra of azurite and malachite, Spectrochim. Acta Part A, 24(1968), No. 12, p. 2131. doi: 10.1016/0584-8539(68)80273-9
      [28]
      M. Descamps and J.F. Willart, Perspectives on the amorphization/milling relationship in pharmaceutical materials, Adv. Drug Delivery Rev., 100(2016), p. 51. doi: 10.1016/j.addr.2016.01.011
      [29]
      P. Baláž, E. Turianicová, M. Fabián, R.A. Kleiv, J. Briančin, and A. Obut, Structural changes in olivine (Mg. Fe)2SiO4 mechanically activated in high-energy mills, Int. J. Miner. Process., 88(2008), No. 1-2, p. 1. doi: 10.1016/j.minpro.2008.04.001
      [30]
      T. Tunç, F. Apaydin, and K. Yildiz, Effects of mechanical activation on the structure of nickeliferous laterite, Acta Phys. Pol. A, 123(2013), No. 2, p. 349. doi: 10.12693/APhysPolA.123.349
      [31]
      Y.J. Wang, S.L. Pan, X.L. Hou, G. Liu, J.D. Wang, and D.Z. Jia, Non-centrosymmetric sodium borate: Crystal growth, characterization and properties on Na2B4O12H10, Solid State Sci., 12(2010), No. 10, p. 1726. doi: 10.1016/j.solidstatesciences.2010.07.021
      [32]
      Z. He, J. Zhou, Z.P. Lai, L.H. Yang, J.M. Liang, H. Long, and X.J. Ou, Quartz OSL dating of sand dunes of Late Pleistocene in the Mu Us Desert in northern China, Quat. Geochronol., 5(2010), No. 2-3, p. 102. doi: 10.1016/j.quageo.2009.02.011
      [33]
      E. Horváth, R.L. Frost, É. Makó, J. Kristóf, and T. Cseh, Thermal treatment of mechanochemically activated kaolinite, Thermochim. Acta, 404(2003), No. 1-2, p. 227. doi: 10.1016/S0040-6031(03)00184-9
      [34]
      R.L. Frost, W.N. Martens, L. Rintoul, E. Mahmutagic, and J.T. Kloprogge, Raman spectroscopic study of azurite and malachite at 298 and 77 K, J. Raman Spectrosc., 33(2002), No. 4, p. 252. doi: 10.1002/jrs.848
      [35]
      Y.Z. Xu, T. Jiang, M. Zhou, J. Wen, W.Y. Chen, and X.X. Xue, Effects of mechanical activation on physicochemical properties and alkaline leaching of boron concentrate, Hydrometallurgy, 173(2017), p. 32. doi: 10.1016/j.hydromet.2017.05.014

    Catalog


    • /

      返回文章
      返回