Cite this article as: |
Tian Qiu, Jian-guo Yang, and Xue-jie Bai, Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 162-172. https://doi.org/10.1007/s12613-019-1859-9 |
[1] |
D.D.L. Chung, Review graphite, J. Mater. Sci., 37(2002), No. 8, p. 1475. doi: 10.1023/A:1014915307738
|
[2] |
D.D.L. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon, 50(2012), No. 9, p. 3342. doi: 10.1016/j.carbon.2012.01.031
|
[3] |
S.W. Sharshir, G.L. Peng, L.R. Wu, F.A. Essa, A.E. Kabeel, and N. Yang, The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance, Appl. Energy, 191(2017), p. 358. doi: 10.1016/j.apenergy.2017.01.067
|
[4] |
Y.N. Yang, Y. Pang, Y. Liu, and H.W. Guo, Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving, Mater. Lett., 216(2018), p. 220. doi: 10.1016/j.matlet.2018.01.025
|
[5] |
L.F. Castañeda, F.C. Walsh, J.L. Nava, and C.P. de León, Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications, Electrochim. Acta., 258(2017), p. 1115. doi: 10.1016/j.electacta.2017.11.165
|
[6] |
G.M. Butyrin, Density, porous structure, and gas-dynamic characteristics of finely grained graphites (a review), Solid Fuel Chem., 49(2015), No. 5, p. 304. doi: 10.3103/S0361521915050055
|
[7] |
A.P. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Graphite nanoplatelet−epoxy composite thermal interface materials, J. Phys. Chem. C, 111(2007), No. 21, p. 7565. doi: 10.1021/jp071761s
|
[8] |
Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials, Phys. Rev. Lett., 84(2000), No. 8, p. 1744. doi: 10.1103/PhysRevLett.84.1744
|
[9] |
S.C. Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, and J. Gutzmer, A review of graphite beneficiation techniques, Miner. Process. Extr. Metall. Rev., 37(2016), No. 1, p. 58. doi: 10.1080/08827508.2015.1115992
|
[10] |
H.H. Cai, Y.S. Li, and X.L. Luo, The characteristics and prospect of reserves of graphite resources in China, China Min. Mag., 25(2016), No. S2, p. 5.
|
[11] |
C.L. Ma, Y. Zhao, J. Li, Y. Song, J.L. Shi, Q.G. Guo, and L. Liu, Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries, Carbon, 64(2013), p. 553. doi: 10.1016/j.carbon.2013.07.089
|
[12] |
D. Marchand, C. Fretigny, M. Lagues, A.P. Legrand, E. McRae, J.F. Mareche, and M. Lelaurain, Surface structure and electrical conductivity of natural and artificial graphites, Carbon, 22(1984), No. 6, p. 497. doi: 10.1016/0008-6223(84)90082-4
|
[13] |
X.B. Fu, X.L. Song, and Y.M. Zhang, Facile preparation of graphene sheets from synthetic graphite, Mater. Lett., 70(2012), p. 181. doi: 10.1016/j.matlet.2011.12.002
|
[14] |
M. Mundszinger, S. Farsi, M. Rapp, U. Golla-Schindler, U. Kaiser, and M. Wachtler, Morphology and texture of spheroidized natural and synthetic graphites, Carbon, 111(2017), p. 764. doi: 10.1016/j.carbon.2016.10.060
|
[15] |
F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, and I.J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 4, p. 2128. doi: 10.1016/j.jpowsour.2010.10.025
|
[16] |
C.L. Fan, H. He, K.H. Zhang and S.C. Han, Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity, Electrochim. Acta, 75(2012), p. 311. doi: 10.1016/j.electacta.2012.05.010
|
[17] |
T. Liu, R.Y. Luo, S.H. Yoon, and I. Mochida, Anode performance of boron-doped graphites prepared from shot and sponge cokes, J. Power Sources, 195(2010), No. 6, p. 1714. doi: 10.1016/j.jpowsour.2009.08.104
|
[18] |
S.L. Huang, H.J. Guo, X.H. Li, Z.X. Wang, L. Gan, J.X. Wang, and W. Xiao, Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries, J. Solid State Electrochem, 17(2013), No. 5, p. 1401. doi: 10.1007/s10008-013-2003-9
|
[19] |
T.S. Yeh, Y.S. Wu, and Y.H. Lee, Graphitization of unburned carbon from oil-fired fly ash applied for anode materials of high power lithium ion batteries, Mater. Chem. Phys., 130(2011), No. 1-2, p. 309. doi: 10.1016/j.matchemphys.2011.06.045
|
[20] |
I. Cameán, P. Lavela, J.L. Tirado, and A.B. García, On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries, Fuel, 89(2010), No. 5, p. 986. doi: 10.1016/j.fuel.2009.06.034
|
[21] |
S. Yang, I.J. Kim, I.S. Choi, M.K. Bae, and H.S. Kim, Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke, J. Nanosci. Nanotechnol., 13(2013), No. 5, p. 3747. doi: 10.1166/jnn.2013.7331
|
[22] |
J.A. Newell, D.D. Edie, and E.L. Fuller Jr, Kinetics of carbonization and graphitization of PBO fiber, J. Appl. Polym. Sci., 60(1996), No. 6, p. 825. doi: 10.1002/(SICI)1097-4628(19960509)60:6<825::AID-APP5>3.0.CO;2-L
|
[23] |
C. Pantea, J. Qian, G.A. Voronin, and T.W. Zerda, High pressure study of graphitization of diamond crystals, J. Appl. Phys., 91(2002), No. 4, p. 1957. doi: 10.1063/1.1433181
|
[24] |
J.Y. Zhu, S. Zhang, L.X. Wang, D.Z. Jia, M.J. Xu, Z.B. Zhao, J.S. Qiu, and L.X. Jia, Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics, Carbon, 129(2018), p. 54. doi: 10.1016/j.carbon.2017.11.071
|
[25] |
Y.T. Zhang, K.K. Li, S.Z. Ren, D.Y. Wang, A.N. Zhou, and J.S. Qiu, Metal-modified coal-based graphene composites and the photocatalytic performance, Imaging Sci. Photochem., 34(2016), No. 5, p. 475.
|
[26] |
Q. Zhou, Z.B. Zhao, Y.T. Zhang, B. Meng, A.N. Zhou, and J.S. Qiu, Graphene sheets from graphitized anthracite coal: preparation, decoration, and application, Energy Fuels, 26(2012), No. 8, p. 5186. doi: 10.1021/ef300919d
|
[27] |
D. González, M.A. Montes-Morán, I. Suárez-Ruiz, and A.B. Garcia, Structural characterization of graphite materials prepared from anthracites of different characteristics: a comparative analysis, Energy Fuels, 18(2004), No. 2, p. 365. doi: 10.1021/ef030144+
|
[28] |
D. González, M.A. Montes-Morán and A.B. Garcia, Graphite materials prepared from an anthracite: a structural characterization, Energy Fuels, 17(2003), No. 5, p. 1324. doi: 10.1021/ef0300491
|
[29] |
J.B. Geng and Q. Ji, Multi-perspective analysis of China's energy supply security, Energy, 64(2014), p. 541. doi: 10.1016/j.energy.2013.11.036
|
[30] |
F. Gao, J.Y. Qu, Z.B. Zhao, Q. Zhou, B.B. Li, and J.S. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application, Carbon, 80(2014), p. 640. doi: 10.1016/j.carbon.2014.09.008
|
[31] |
M. Cabielles, M.A. Montes-Morán, and A.B. Garcia, Structural study of graphite materials prepared by HTT of unburned carbon concentrates from coal combustion fly ashes, Energy Fuels, 22(2008), No. 2, p. 1239. doi: 10.1021/ef700603t
|
[32] |
D.B. Fischbach, Kinetics of graphitization of a petroleum coke, Nature, 200(1963), No. 4913, p. 1281. doi: 10.1038/2001281a0
|
[33] |
A. Oberlin, Pyrocarbons, Carbon, 40(2002), No. 1, p. 7. doi: 10.1016/S0008-6223(01)00138-5
|
[34] |
J.N. Rouzaud and A. Oberlin, Structure, microtexture, and optical properties of anthracene and saccharose-based carbons, Carbon, 27(1989), No. 4, p. 517. doi: 10.1016/0008-6223(89)90002-X
|
[35] |
K. Bratek, W. Bratek, I. Gerus-Piasecka, S. Jasieńko, and P. Wilk, Properties and structure of different rank anthracites, Fuel, 81(2002), No. 1, p. 97. doi: 10.1016/S0016-2361(01)00120-X
|
[36] |
A. Oberlin and G. Terriere, Graphitization studies of anthracites by high resolution electron microscopy, Carbon, 13(1975), No. 5, p. 367. doi: 10.1016/0008-6223(75)90004-4
|
[37] |
W. Ruland, X-ray studies on the structure of graphitic carbons, Acta Crystallogr., 18(1965), No. 6, p. 992. doi: 10.1107/S0365110X65002414
|
[38] |
W. Li and Y.M. Zhu, Structural characteristics of coal vitrinite during pyrolysis, Energy Fuels, 28(2014), No. 6, p. 3645. doi: 10.1021/ef500300r
|
[39] |
H. Badenhorst, Microstructure of natural graphite flakes revealed by oxidation: Limitations of XRD and Raman techniques for crystallinity estimates, Carbon, 66(2014), p. 674. doi: 10.1016/j.carbon.2013.09.065
|
[40] |
L. Bokobza, J.L. Bruneel, and M. Couzi, Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black, Chem. Phys. Lett., 590(2013), p. 153. doi: 10.1016/j.cplett.2013.10.071
|
[41] |
M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, and M. Endo, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B, 59(1999), No. 10, p. R6585. doi: 10.1103/PhysRevB.59.R6585
|
[42] |
Y. Wang, S. Serrano, and J.J. Santiago-Avilés, Raman characterization of carbon nanofibers prepared using electrospinning, Synth. Met., 138(2003), No. 3, p. 423. doi: 10.1016/S0379-6779(02)00472-1
|