留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 3
Mar.  2020

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1923
  • HTML全文浏览量:  294
  • PDF下载量:  50
  • 被引次数: 0
Man Liu, Guang Xu, Jun-yu Tian, Qing Yuan, and Xin Chen, Effect of austempering time on microstructure and properties of a low-carbon bainite steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 340-346. https://doi.org/10.1007/s12613-019-1881-y
Cite this article as:
Man Liu, Guang Xu, Jun-yu Tian, Qing Yuan, and Xin Chen, Effect of austempering time on microstructure and properties of a low-carbon bainite steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 340-346. https://doi.org/10.1007/s12613-019-1881-y
引用本文 PDF XML SpringerLink
  • Research Article

    Effect of austempering time on microstructure and properties of a low-carbon bainite steel

    + Author Affiliations
    • The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature. Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation BRF = 1− exp(−0.0499 × t0.7616) for bainite reaction at 350°C was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.
    • loading
    • [1]
      H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed., IOM Communications Ltd. London, 2001.
      [2]
      H.I. Aaronson, T. Furuhara, J.M. Rigsbee, W.T. Reynolds, and J.M. Howe, Crystallographic and mechanistic aspects of growth by shear and by diffusional processes, Metall. Trans. A, 21(1990), No. 9, p. 2369. doi: 10.1007/BF02646984
      [3]
      Z. Lawrynowicz and A. Barbacki, Features of bainite transformation in steels, Adv. Mater. Sci., 2(2002), No. 1, p. 5.
      [4]
      Y. Ohmori, Bainite transformations in extremely low carbon steels, ISIJ Int., 35(1995), No. 8, p. 962. doi: 10.2355/isijinternational.35.962
      [5]
      H.K.D.H. Bhadeshia, The bainite transformation: Unresolved issues, Mater. Sci. Eng. A, 273-275(1999), p. 58. doi: 10.1016/S0921-5093(99)00289-0
      [6]
      M. Hillert, Paradigm shift for bainite, Scripta Mater., 47(2002), No. 3, p. 175. doi: 10.1016/S1359-6462(02)00125-2
      [7]
      A. Borgenstam, M. Hillert, and J. Ågren, Metallographic evidence of carbon diffusion in the growth of bainite, Acta Mater., 57(2009), No. 11, p. 3242. doi: 10.1016/j.actamat.2009.03.026
      [8]
      J.Y. Tian, G. Xu, Z.Y. Jiang, X.L. Wan, H.J Hu, and Q. Yuan, Transformation behavior and properties of carbide-free bainite steels with different Si contents, Steel Res. Int., 90(2019), No. 3, art No. 1800474.
      [9]
      Z.S. Yao, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, and M.X. Zhou, Effect of Ni and Cr addition on transformation and properties of low-carbon bainitic steels, Trans. Indian Inst. Met., 72(2019), No. 5, p. 1167. doi: 10.1007/s12666-019-01590-7
      [10]
      J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, and Z.L. Xue, Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels, J. Iron Steel Res. Int., 26(2019), No. 8, p. 846. doi: 10.1007/s42243-019-00253-7
      [11]
      H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu, The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels, Mater. Des., 84(2015), p. 95. doi: 10.1016/j.matdes.2015.06.133
      [12]
      X.D. Wang, B.X. Huang, L. Wang, and Y.H. Rong, Microstructure and mechanical properties of microalloyed high-strength transformation‒induced plasticity steels, Metall. Mater. Trans. A, 39(2008), No. 1, p. 1. doi: 10.1007/s11661-007-9366-4
      [13]
      T. Heller and A. Nuss, Effect of alloying elements on microstructure and mechanical properties of hot rolled multiphase steels, Ironmaking Steelmaking, 32(2005), No. 4, p. 303. doi: 10.1179/174328105X47981
      [14]
      J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, and X.L. Wan, The Effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels, Metals, 7(2017), No. 2, p. 40. doi: 10.3390/met7020040
      [15]
      Z.N. Yang, C.H. Chu, F. Jiang, Y.M. Qin, X.Y. Long, S.L. Wang, D. Chen, and F.C. Zhang, Accelerating nano-bainite transformation based on a new constructed microstructural predicting model, Mater. Sci. Eng. A, 748(2019), p. 16. doi: 10.1016/j.msea.2019.01.061
      [16]
      G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, and B.Z. Bai, Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite, Acta Mater., 76(2014), p. 425. doi: 10.1016/j.actamat.2014.05.055
      [17]
      J.Y. Tian, G. Xu, M.X. Zhou, and H.J. Hu, Refined bainite microstructure and mechanical properties of a high-strength low-carbon bainitic steel treated by austempering below and above Ms, Steel Res. Int., 89(2018), No. 4, art No. 1700469.
      [18]
      Y.Y. Huang, Q.G. Li, X.F. Huang, and W.G. Huang, Effect of bainitic isothermal transformation plus Q&P process on the microstructure and mechanical properties of 0.2C bainitic steel, Mater. Sci. Eng. A, 678(2016), p. 339. doi: 10.1016/j.msea.2016.10.011
      [19]
      X.F Huang, W.L. Liu, Y.Y. Huang, H. Chen, and W.G. Huang, Effect of a quenching-long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel, J. Mater. Process. Technol., 222(2015), p. 181. doi: 10.1016/j.jmatprotec.2015.03.010
      [20]
      Q.G. Li, X.F. Huang, and W.G. Huang, Fatigue property and microstructure deformation behavior of multiphase microstructure in a medium-carbon bainite steel under rolling contact condition, Int. J. Fatigue, 125(2019), p. 381. doi: 10.1016/j.ijfatigue.2019.04.019
      [21]
      H.J. Hu, G. Xu, M.X. Zhou, and Q. Yuan, New insights to the promoted bainitic transformation in prior deformed austenite in a Fe−C−Mn−Si alloy, Met. Mater. Int., 23(2017), No. 2, p. 233. doi: 10.1007/s12540-017-6407-4
      [22]
      W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang, Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel, Acta Mater., 61(2013), No. 11, p. 4142. doi: 10.1016/j.actamat.2013.03.041
      [23]
      J.G. He, A.M. Zhao, C. Zhi, and H.L. Fan, Acceleration of nanobainite transformation by multi-step ausforming process, Scripta Mater., 107(2015), p. 71. doi: 10.1016/j.scriptamat.2015.05.023
      [24]
      H.J. Hu, G. Xu, F.Q. Dai, J.Y. Tian, and G.H. Chen, Critical ausforming temperature to promote isothermal bainitic transformation in prior-deformed austenite, Mater. Sci. Technol., 35(2019), No. 4, p. 420. doi: 10.1080/02670836.2019.1567663
      [25]
      H. Zou, H.J. Hu, G. Xu, Z.L. Xiong, and F.Q. Dai, Combined effects of deformation and undercooling on isothermal bainitic transformation in an Fe−C−Mn−Si alloy, Metals, 9(2019), No. 2, p. 138. doi: 10.3390/met9020138
      [26]
      L. Morales-Rivas, H.W. Yen, B.M. Huang, M. Kuntz, F.G. Caballero, J.R. Yang, and C. Garcia-Mateo, Tensile response of two nanoscale bainite composite-like structures, JOM, 67(2015), No. 10, p. 2223. doi: 10.1007/s11837-015-1562-x
      [27]
      L.J. Zhao, L.H. Qian, J.Y. Meng, Z. Qian, and F.C. Zhang, Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scripta Mater., 112(2016), p. 96. doi: 10.1016/j.scriptamat.2015.09.022
      [28]
      Z.W. Hu, G. Xu, C. Zhang, and H.J. Hu, Research on continuous cooling transformation curve of a C−Si−Mn steel, Appl. Mech. Mater., 556-562(2014), p. 404. doi: 10.4028/www.scientific.net/AMM.556-562.404
      [29]
      C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong, Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel, Mater. Sci. Eng. A, 527(2010), No. 15, p. 3442. doi: 10.1016/j.msea.2010.02.020
      [30]
      L.I. Lin, B.C.D. Cooman, P. Wollants, H.E. Yanlin, and X. Zhou, Effect of aluminum and silicon on transformation induced plasticity of the TRIP steel, Mater. Sci. Technol., 20(2004), No. 2, p. 135.
      [31]
      W.C. Jeong, Effect of silicon content and annealing temperature on formation of retained austenite and mechanical properties in multi-phase steels, Met. Mater. Int., 9(2003), No. 2, p. 179. doi: 10.1007/BF03027275
      [32]
      K.I. Sugimoto, Fracture strength and toughness of ultra high strength TRIP aided steels, Mater. Sci. Technol., 25(2009), No. 9, p. 1108. doi: 10.1179/174328409X453307
      [33]
      P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag, and F. Delannay, Bainite transformation of low carbon Mn−Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention, Mater. Sci. Eng. A, 273-275(1999), p. 475. doi: 10.1016/S0921-5093(99)00331-7
      [34]
      M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia, Three-dimensional atom probe analysis of carbon distribution in low-temperature bainite, Scripta Mater., 50(2004), No. 10, p. 1277. doi: 10.1016/j.scriptamat.2004.02.024
      [35]
      E.V. Pereloma, I.B. Timokhina, M.K. Miller, and P.D. Hodgson, Three-dimensional atom probe analysis of solute distribution in thermomechanically processed trip steels, Acta Mater., 55(2007), No. 8, p. 2587. doi: 10.1016/j.actamat.2006.12.001
      [36]
      F.G. Caballero, M.K. Miller, A.J. Clarke, and C. Garcia-Mateo, Examination of carbon partitioning into austenite during tempering of bainite, Scripta Mater., 63(2010), No. 4, p. 442. doi: 10.1016/j.scriptamat.2010.04.049
      [37]
      I.B. Timokhina, X.Y. Xiong, H. Beladi, S. Mukherjee, and P.D. Hodgson, Three-dimensional atomic scale analysis of microstructures formed in high strength steels, Mater. Sci. Technol., 27(2011), No. 4, p. 739. doi: 10.1179/1743284710Y.0000000021
      [38]
      S.N. Prasad, A. Saxena, M.M.S. Sodhi, and P.N. Tripathi, Influence of different heat treatment parameters on microstructure and mechanical properties of C−Mn strapping quality steels, Mater. Sci. Eng. A, 476(2008), No. 1-2, p. 126. doi: 10.1016/j.msea.2007.04.071
      [39]
      F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C.G.D. Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Mater., 57(2009), No. 1, p. 8. doi: 10.1016/j.actamat.2008.08.041

    Catalog


    • /

      返回文章
      返回