留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 1
Jan.  2020

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1829
  • HTML全文浏览量:  486
  • PDF下载量:  64
  • 被引次数: 0
Fabiane Carvalho Ballotin, Mayra Nascimento, Sara Silveira Vieira, Alexandre Carvalho Bertoli, Ottávio Carmignano, Ana Paula de Carvalho Teixeira, and Rochel Montero Lago, Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 46-54. https://doi.org/10.1007/s12613-019-1891-9
Cite this article as:
Fabiane Carvalho Ballotin, Mayra Nascimento, Sara Silveira Vieira, Alexandre Carvalho Bertoli, Ottávio Carmignano, Ana Paula de Carvalho Teixeira, and Rochel Montero Lago, Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 46-54. https://doi.org/10.1007/s12613-019-1891-9
引用本文 PDF XML SpringerLink
研究论文

不同结构和形态的天然镁硅酸盐:与K反应制备生物柴油的K2MgSiO4催化剂

  • Research Article

    Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production

    + Author Affiliations
    • In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile (which have the same general formula Mg3Si2O5(OH)4), and talc (Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20wt% K and treatment at 700–900°C led to a solid-state reaction to mainly form the K2MgSiO4 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSiO4 formation. All the materials showed catalytic activity for the transesterification of soybean oil (1:6 of oil : methanol molar ratio, 5wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSiO4.

    • loading
    • [1]
      A.L. Auzende, I. Daniel, B. Reynard, C. Lemaire, and F. Guyot, High-pressure behavior of serpentine minerals: A Raman spectroscopic study, Phys. Chem. Miner., 31(2004), No. 5, p. 269. doi: 10.1007/s00269-004-0384-0
      [2]
      S. Guillot, S. Schwartz, B. Reynard, P. Agard, and C. Prigent, Tectonic significance of serpentinites, Tectonophysics, 646(2015), p. 1. doi: 10.1016/j.tecto.2015.01.020
      [3]
      B.W. Evans, K. Hattori, and A. Baronnet, Serpentinite: what, why, where? Elements, 9(2013), No. 2, p. 99.
      [4]
      B.T. Mossman, J. Bignon, M. Corn, A. Seaton, and J.B. Gee, Asbestos: scientific developments and implications for public policy, Science, 247(1990), No. 4940, p. 294. doi: 10.1126/science.2153315
      [5]
      G.C. Capitani and M. Mellini, The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction, Am. Mineral., 91(2006), No. 2-3, p. 394. doi: 10.2138/am.2006.1919
      [6]
      M. Claverie, A. Dumas, C. Carême, M. Poirier, C. Le Roux, P. Micoud, F. Martin, and C. Aymonier, Synthetic talc and talc-like structures: Preparation, features and applications, Chemistry, 24(2018), No. 3, p. 519. doi: 10.1002/chem.201702763
      [7]
      S.S. Vieira, G.M. Paz, A.P.C. Teixeira, E.M. Moura, O.R. Carmignano, R.C.O. Sebastião, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with Li+ to produce Li4SiO4/MgO composites for the efficient capture of CO2, J. Environ. Chem. Eng., 6(2018), No. 4, p. 4189. doi: 10.1016/j.jece.2018.06.026
      [8]
      G.M. Paz, S.S. Vieira, A.C. Bertoli, F.C. Ballotin, E.M. de Moura, A.P.C. Teixeira, D. Costa, O. Carmignano, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with NaOH to produce a new basic catalytic phase Na2Mg2Si2O7 for biodiesel production, J. Braz. Chem. Soc., 29(2018), No. 9, p. 1823. doi: 10.21577/0103-5053.20180058
      [9]
      F.C. Ballotin, T.E. Cibaka, T.A. Ribeiro-Santos, E.M. Santos, A.P. de Carvalho Teixeira, and R.M. Lago, K2MgSiO4: A novel K+-trapped biodiesel heterogeneous catalyst produced from serpentinite Mg3Si2O5(OH)4, J. Mol. Catal. A:Chem., 422(2016), p. 258. doi: 10.1016/j.molcata.2016.02.006
      [10]
      U. Schuchardt, R. Sercheli, and R.M. Vargas, Transesterification of vegetable oils: A review, J. Braz. Chem. Soc., 9(1998), No. 3, p. 199. doi: 10.1590/S0103-50531998000300002
      [11]
      A.P.C. Teixeira, E.M. Santos, A.F.P. Vieira, and R.M. Lago, Use of chrysotile to produce highly dispersed K-doped MgO catalyst for biodiesel synthesis, Chem. Eng. J., 232(2013), p. 104. doi: 10.1016/j.cej.2013.07.065
      [12]
      A. Shakoor and N.L. Thomas, Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites, Polym. Eng. Sci., 54(2014), No. 1, p. 64. doi: 10.1002/pen.23543
      [13]
      R.G. Coleman, Petrologic and geophysical nature of serpentinites, Geol. Soc. Am. Bull., 82(1971), No. 4, p. 897. doi: 10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2
      [14]
      M. Wesołowski, Thermal decomposition of talc: A review, Thermochim. Acta, 78(1984), No. 1-3, p. 395. doi: 10.1016/0040-6031(84)87165-8
      [15]
      M.D. Menzel, C.J. Garrido, V.L. Sánchez-Vizcaíno, C. Marchesi, K. Hidas, M.P. Escayola, and A.D. Huertas, Carbonation of mantle peridotite by CO2-rich fluids: The formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada), Lithos, 323(2018), p. 238. doi: 10.1016/j.lithos.2018.06.001
      [16]
      X. Liu, X. Liu, and Y. Hu, Investigation of the thermal decomposition of talc, Clays Clay Miner., 62(2014), No. 2, p. 137. doi: 10.1346/CCMN.2014.0620206
      [17]
      C. Viti, Serpentine minerals discrimination by thermal analysis, Am. Mineral., 95(2010), No. 4, p. 631. doi: 10.2138/am.2010.3366
      [18]
      H. Maleki, M. Kazemeini, and F. Bastan, Transesterification of canola oil to biodiesel using CaO/Talc nanopowder as a mixed oxide catalyst, Chem. Eng. Technol., 40(2017), No. 10, p. 1923. doi: 10.1002/ceat.201600579
      [19]
      A.F. Gualtieri, N.B. Gandolfi, S. Pollastri, M. Burghammer, E. Tibaldi, F. Belpoggi, K. Pollok, F. Langenhorst, R. Vigliaturo, and G. Dražić, New insights into the toxicity of mineral fibers: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibers found in the tissues of Sprague-Dawley rats, Toxicol. Lett., 274(2017), p. 20. doi: 10.1016/j.toxlet.2017.04.004
      [20]
      C.M. Yarborough, The risk of mesothelioma from exposure to chrysotile asbestos, Curr. Opin. Pulm. Med., 13(2007), No. 4, p. 334. doi: 10.1097/MCP.0b013e328121446c
      [21]
      B. Ersoy, S. Dikmen, A. Yildiz, R. Gören, and Ö. Elitok, Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turk. J. Earth Sci., 22(2013), No. 4, p. 632.

    Catalog


    • /

      返回文章
      返回