留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 2
Feb.  2020

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1657
  • HTML全文浏览量:  366
  • PDF下载量:  46
  • 被引次数: 0
Guan-nan Zhang, Xiao Yang, Zeng-chao Yang, Yong Li, Gang He,  and Jiang-tao Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 244-251. https://doi.org/10.1007/s12613-019-1892-8
Cite this article as:
Guan-nan Zhang, Xiao Yang, Zeng-chao Yang, Yong Li, Gang He,  and Jiang-tao Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 244-251. https://doi.org/10.1007/s12613-019-1892-8
引用本文 PDF XML SpringerLink
研究论文

高重力燃烧合成WC/CoCrFeNiAl0.2高熵合金复合材料

  • Research Article

    Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis

    + Author Affiliations
    • The WC/CoCrFeNiAl0.2 high-entropy alloy (HEA) composites were prepared through high-gravity combustion synthesis. The preparation method is presented below. First, using a designed suitable multiphase thermite system, the molten CoCrFeNiAl0.2 HEA was fabricated using low-cost metal oxides. The molten HEA was subsequently infiltrated into the WC layer to fabricate WC/CoCrFeNiAl0.2 composites in a high-gravity field. The porosity of the WC/CoCrFeNiAl0.2 composites was down-regulated, and their compressive yield strength was up-regulated when the high-gravity field was increased from 600g

      to 1500g

      because this infiltration process of a HEA melt into the WC layer is driven by centrifugal force. The WC particles in the composites exhibited a gradient distribution along the direction of the centrifugal force, which was attributed to the combined action of the high-gravity field and the temperature gradient field. The Vickers hardness of the sample was down-regulated from 9.53 to 7.41 GPa along the direction of the centrifugal force.

    • loading
    • [1]
      H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, William Andrew, New Jersey, 1996, p. 100.
      [2]
      G.S. Upadhyaya, Cemented Tungsten Carbides: Production, Properties, and Testing, William Andrew, New Jersey, 1998, p. 1.
      [3]
      C.M. Fernandes and A.M.R. Senos, Cemented carbide phase diagrams: a review, Int. J. Refract. Met. Hard Mater., 29(2011), No. 4, p. 405. doi: 10.1016/j.ijrmhm.2011.02.004
      [4]
      M. Aristizabl, N. Rodriguez, F. Ibarreta, R. Martinez, and J. M. Sanchez, Liquid phase sintering and oxidation resistance of WC–Ni–Co–Cr cemented carbides, Int. J. Refract. Met. Hard Mater., 28(2010), No. 4, p. 516. doi: 10.1016/j.ijrmhm.2010.02.010
      [5]
      E. Ghasali, T. Ebadzadeh, M. Alizadeh, and M. Razavi, Mechanical and microstructural properties of WC-based compositess: A comparative study on the effect of Ni and Mo binder phases, Ceram. Int., 44(2018), No. 2, p. 2283. doi: 10.1016/j.ceramint.2017.10.189
      [6]
      H.Y. Rong, Z.J. Peng, X.Y. Ren, Y. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi, and H.Z. Miao, Ultrafine WC–Ni cemented carbides fabricated by spark plasma sintering, Mater. Sci. Eng. A, 532(2012), p. 543. doi: 10.1016/j.msea.2011.10.119
      [7]
      Z.Y. Zhao, J.W. Liu, H.G. Tang, X.F. Ma, and W. Zhao, Investigation on the mechanical properties of WC–Fe–Cu hard alloys, J. Alloys Compd., 632(2015), p. 729. doi: 10.1016/j.jallcom.2015.01.300
      [8]
      I.J. Shao, K.I. Na, I.Y. Ko, J.M. Doh, and J.K. Yoon, Effect of FeAl3 on properties of (W, Ti)C–FeAl3 hard materials consolidated by a pulsed current activated sintering method, Ceram. Int., 38(2012), No. 6, p. 5133. doi: 10.1016/j.ceramint.2012.03.017
      [9]
      C.S. Chen, C.C. Yang, H.Y. Chai, J.W. Yeh, and J.L.H. Chau, Novel composites material of WC/multi-element alloy, Int. J. Refract. Met. Hard Mater., 43(2014), p. 200. doi: 10.1016/j.ijrmhm.2013.11.005
      [10]
      W.Y. Luo, Y.Z. Liu, Y. Luo, and M. Wu, Fabrication and characterization of WC–AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering, J. Alloys Compd., 754(2018), p. 163. doi: 10.1016/j.jallcom.2018.04.270
      [11]
      I.L. Velo, F.J. Gotor, M.D. Alcal, C. Real, and J.M. Córdoba, Fabrication and characterization of HEA–WC cemented carbide based on the CoCrFeNiMn high-entropy alloy, J. Alloys Compd., 746(2018), p. 1. doi: 10.1016/j.jallcom.2018.02.292
      [12]
      J.Y. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloy with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [13]
      X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
      [14]
      O. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloy, Acta Mater., 68(2014), p. 214. doi: 10.1016/j.actamat.2014.01.029
      [15]
      P. Zhao, S.B. Guo, G.H. Liu, Y.X. Chen, and J.T. Li, Fabrication of W–Cu functionally graded material with improved mechanical strength, J. Alloys Compd., 601(2014), p. 289. doi: 10.1016/j.jallcom.2014.01.180
      [16]
      R.X. Lia, P.K. Liaw, and Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloy by high-gravity combustion from oxides, Mater. Sci. Eng. A, 707(2017), p. 668. doi: 10.1016/j.msea.2017.09.101
      [17]
      G.H. Liu, J.T. Li, and K.X. Chen, One-step preparation of dense TiC1–xNx–Ni3Ti composites by combustion synthesis, Mater. Des., 87(2015), p. 6. doi: 10.1016/j.matdes.2015.07.179
      [18]
      G.H. Liu, J.T. Li, Z.C. Yang, S.B. Guo, and Y.X. Chen, High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides, Scripta Mater., 69(2013), No. 8, p. 642. doi: 10.1016/j.scriptamat.2013.07.022
      [19]
      Y. Xu, Z.C. Yang, H. Zhao, G.H. Liu, and J.T. Li, Fabrication of Ni/WC composite with two distinct layers through centrifugal infiltration combined with a thermite reaction, Ceram. Int., 40(2014), No. 1, p. 1037. doi: 10.1016/j.ceramint.2013.06.101
      [20]
      P. Zhao, S. Guo, G.H. Liu, Y.X. Chen, and J.T. Li, Fast fabrication of W–Cu functionally graded material by high-gravity combustion synthesis and melt-infiltration, J. Nucl. Mater., 445(2014), No. 1-3, p. 26. doi: 10.1016/j.jnucmat.2013.10.032
      [21]
      V. Martínez and J. Echeberria, Hot isostatic pressing of cubic boron nitrideetungsten carbide/cobalt (cBN–WC/Co) composites: Effect of cBN particle size and some processing parameters on their microstructure and properties, J. Am. Ceram. Soc., 90(2007), No. 2, p. 415. doi: 10.1111/j.1551-2916.2006.01426.x
      [22]
      J. Pei, J.T. Li, G.H. Liu, and K.X. Chen, Fabrication of bulk Al2O3 by combustion synthesis melt-casting under ultra-high-gravity, J. Alloys Compd., 476(2009), No. 1-2, p. 854. doi: 10.1016/j.jallcom.2008.09.166
      [23]
      R. Zhou, G. Chen, B. Liu, J.W. Wang, L.L. Han, and Y. Liu, Microstructures and wear behaviour of (FeCoCrNi)1–x(WC)x high-entropy alloy composites, Int. J. Refract. Met. Hard Mater., 75(2018), p. 56. doi: 10.1016/j.ijrmhm.2018.03.019

    Catalog


    • /

      返回文章
      返回