留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 6
Jun.  2020

图(7)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  1735
  • HTML全文浏览量:  394
  • PDF下载量:  35
  • 被引次数: 0
Zu-jian Yang, Kai-kun Wang, and Yan Yang, Optimization of ECAP−RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 792-800. https://doi.org/10.1007/s12613-019-1895-5
Cite this article as:
Zu-jian Yang, Kai-kun Wang, and Yan Yang, Optimization of ECAP−RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 792-800. https://doi.org/10.1007/s12613-019-1895-5
引用本文 PDF XML SpringerLink
研究论文

6061铝合金半固态坯料ECAP−RAP制备工艺的优化

  • Research Article

    Optimization of ECAP−RAP process for preparing semisolid billet of 6061 aluminum alloy

    + Author Affiliations
    • 6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing (ECAP)−recrystallization and partial (RAP) process (a combination of equal-channel angular processing and recrystallization and partial remelting). The effects of different process parameters on the alloy microstructure were studied and the quantitative relationship between the process parameters and microstructure was established by response surface methodology (RSM) to optimize the process parameters. According to the orthogonal test, the holding temperature and holding time of the four ECAP−RAP process parameters were found to have the greatest impact on the microstructural characteristics, including average grain size and average shape factor. Through RSM, it was also found that when the average grain size or the average shape factor is optimized separately, another will be degraded. When the two indexes were simultaneously considered, the optimal process parameters were found to be a holding temperature of 623°C and holding time of 13 min, and the corresponding average grain size and average shape factor were 35.97 μm and 0.8535, respectively. Moreover, comparing the experimental and predicted values, the reliability of the established response surface model was verified.

    • loading
    • [1]
      Y.N. Chen, G. Liu, X.M. Zhang, and Y.Q. Zhao, Influence of semisolid forging ratio on the microstructure and mechanical properties of Ti14 alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 266. doi: 10.1007/s12613-013-0722-7
      [2]
      W. Liu, D.D. Yang, G.F. Quan, Y.B. Zhang, and D.D. Yao, Microstructure evolution of semisolid Mg−2Zn−0.5Y alloy during isothermal heat treatment, Rare Met. Mater. Eng., 45(2016), No. 8, p. 1967. doi: 10.1016/S1875-5372(16)30155-2
      [3]
      M.J. Nayyeri and K. Dehghani, Microstructure evolution in as-cast and SIMA-processed AE42 magnesium alloy, J. Mater. Eng. Perform., 23(2014), No. 9, p. 3077. doi: 10.1007/s11665-014-1080-y
      [4]
      D.T. Wang, H.T. Zhang, L. Li, H.L. Wu, K. Qin, and J.Z. Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al−Mg2Si in situ composites, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1080. doi: 10.1007/s12613-018-1659-7
      [5]
      F. Ozturk, A. Sisman, S. Toros, S. Kilic, and R.C. Picu, Influence of aging treatment on mechanical properties of 6061 aluminum alloy, Mater. Des., 31(2010), No. 2, p. 972. doi: 10.1016/j.matdes.2009.08.017
      [6]
      M. Mansourinejad and B. Mirzakhani, Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2072. doi: 10.1016/S1003-6326(11)61430-1
      [7]
      Q. Chen, Z.D. Zhao, G. Chen, and B. Wang, Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy, J. Alloys Compd., 632(2015), p. 190. doi: 10.1016/j.jallcom.2015.01.185
      [8]
      C.Q. Zhao and R.B. Song, Evolution of microstructure and mechanical properties for 9Cr18 stainless steel during thixoforming, Mater. Des., 59(2014), p. 502. doi: 10.1016/j.matdes.2014.03.017
      [9]
      S.Z. Shang, G.M. Lu, X.L. Tang, Z.X. Zhao, and C.M. Wu, Deformation mechanism and forming properties of 6061Al alloys during compression in semi-solid state, Trans. Nonferrous Met. Soc. China, 20(2010), No. 9, p. 1725. doi: 10.1016/S1003-6326(09)60365-4
      [10]
      Y. Xu, J.B. Jia, C. Chen, W.C. Liu, S.Y. Luo, Y. Yang, and L.X. Hu, Thixoforming of semi-solid AZ91D alloy with high solid fraction prepared by the RUE-based SIMA process, Int. J. Adv. Manuf. Technol., 93(2017), No. 9-12, p. 4317. doi: 10.1007/s00170-017-0874-0
      [11]
      F. Wang, W.Q. Zhang, W.L. Xiao, H. Yamagata, and C.L. Ma, Microstructural evolution during reheating of A356 machining chips at semisolid state, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 891. doi: 10.1007/s12613-017-1475-5
      [12]
      H.V. Atkinson, Modelling the semisolid processing of metallic alloys, Prog. Mater. Sci., 50(2005), No. 3, p. 341. doi: 10.1016/j.pmatsci.2004.04.003
      [13]
      C.P. Wang, Z.J. Tang, H.S. Mei, L. Wang, R.Q. Li, and D.F. Li, Formation of spheroidal microstructure in semi-solid state and thixoforming of 7075 high strength aluminum alloy, Rare Met., 34(2015), No. 10, p. 710. doi: 10.1007/s12598-013-0123-0
      [14]
      R. Meshkabadi, G. Faraji, A. Javdani, A. Fata, and V. Pouyafar, Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing, Met. Mater. Int., 23(2017), No. 5, p. 1019. doi: 10.1007/s12540-017-6760-3
      [15]
      J.F. Jiang, Y. Wang, and H.V. Atkinson, Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction, Mater. Charact., 90(2014), p. 52. doi: 10.1016/j.matchar.2014.01.017
      [16]
      K.M. Xue, G.B. Mi, and Q.R. Wang, Compound fabrication technology of semi-solid billet of Al−Si alloy based on SIMA method, Trans. Nonferrous Met. Soc. China, 16(2006), No. 3, p. 1224.
      [17]
      L.P. Wang, W.Y. Jiang, T. Chen, Y.C. Feng, H.Y. Zhou, S.C. Zhao, Z.Q. Liang, and Y. Zhu, Spheroidal microstructure formation and thixoforming of AM60B magnesium alloy prepared by SIMA process, Trans. Nonferrous Met. Soc. China, 22(2012), p. 435. doi: 10.1016/S1003-6326(12)61743-9
      [18]
      J.L. Fu, K.K. Wang, X.W. Li, and H.K. Zhang, Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1404. doi: 10.1007/s12613-016-1364-3
      [19]
      A.A. Khamei, K. Dehghani, and R. Mahmudi, Modeling the hot ductility of AA6061 aluminum alloy after severe plastic deformation, JOM, 67(2015), No. 5, p. 966. doi: 10.1007/s11837-015-1354-3
      [20]
      T. Yuan, J.H. Jiang, L.S. Wang, and A.B. Ma, Overview on the microstructure and mechanical properties of ultrafine-grained Al−Li alloys produced by severe plastic deformation, Rare Met. Mater. Eng., 48(2019), No. 1, p. 55.
      [21]
      M. Aghaie-Khafri and D. Azimi-Yancheshme, The Study of an Al−Fe−Si alloy after equal-channel angular pressing (ECAP) and subsequent semisolid heating, JOM, 64(2012), No. 5, p. 585. doi: 10.1007/s11837-012-0306-4
      [22]
      K.N. Campo and E.J. Zoqui, Thixoforming of an ECAPed aluminum A356 alloy: Microstructure evolution, rheological behavior, and mechanical properties, Metall. Mater. Trans. A, 47(2016), No. 4, p. 1792. doi: 10.1007/s11661-016-3339-4
      [23]
      J.L. Fu, H.J. Jiang, and K.K. Wang, Influence of processing parameters on microstructural evolution and tensile properties for 7075 Al alloy prepared by an ECAP-based SIMA process, Acta Metall. Sin., 31(2018), No. 4, p. 337. doi: 10.1007/s40195-017-0672-6
      [24]
      R. Meshkabadi, G. Faraji, A. Javdani, and V. Pouyafar, Combined effects of ECAP and subsequent heating parameters on semi-solid microstructure of 7075 aluminum alloy, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3091. doi: 10.1016/S1003-6326(16)64441-2
      [25]
      A. Bolouri, M. Shahmiri, and C.G. Kang, Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process, J. Alloys Compd., 509(2011), No. 2, p. 402. doi: 10.1016/j.jallcom.2010.09.042
      [26]
      L. Zhang, Y.B. Liu, Z.Y. Cao, Y.F. Zhang, and Q.Q. Zhang, Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA, J. Mater. Process. Technol., 209(2009), No. 2, p. 792. doi: 10.1016/j.jmatprotec.2008.02.046
      [27]
      H.L. Zhang, X. Li, S.Q. Xiang, C.R. Zhou, and Y.H. Cai, Alloying principle and its application in production of 6××× series wrought aluminum alloy (in Chinese), Light Alloy Fabr. Technol., 40(2012), No. 3, p. 12.
      [28]
      J.F. Jiang, Y. Wang, J.J. Qu, Z.M. Du, Y. Sun, and S.J. Luo, Microstructure evolution of AM60 magnesium alloy semisolid slurry prepared by new SIMA, J. Alloys Compd., 497(2010), No. 1-2, p. 62. doi: 10.1016/j.jallcom.2010.02.099
      [29]
      Y.F. Wang, S.D. Zhao, X.Z. Zhao, and Y.Q. Zhao, Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting, J. Mech. Sci. Technol., 31(2017), No. 8, p. 3917. doi: 10.1007/s12206-017-0737-5
      [30]
      J. Grum and J.M. Slabe, The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni−Co−Mo surfaced layers, J. Mater. Process. Technol., 155-156(2004), p. 2026. doi: 10.1016/j.jmatprotec.2004.04.220
      [31]
      M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(2008), No. 5, p. 965. doi: 10.1016/j.talanta.2008.05.019
      [32]
      D. Baş and İ.H. Boyacı, Modeling and optimization I: Usability of response surface methodology, J. Food Eng., 78(2007), No. 3, p. 836. doi: 10.1016/j.jfoodeng.2005.11.024

    Catalog


    • /

      返回文章
      返回