留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 4
Apr.  2020

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1858
  • HTML全文浏览量:  376
  • PDF下载量:  69
  • 被引次数: 0
Li-fen Guo, Shi-yun Zhang, Jian Xie, Dong Zheng, Yuan Jin, Kang-yan Wang, Da-gao Zhuang, Wen-quan Zheng,  and Xin-bing Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 515-525. https://doi.org/10.1007/s12613-019-1900-z
Cite this article as:
Li-fen Guo, Shi-yun Zhang, Jian Xie, Dong Zheng, Yuan Jin, Kang-yan Wang, Da-gao Zhuang, Wen-quan Zheng,  and Xin-bing Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 515-525. https://doi.org/10.1007/s12613-019-1900-z
引用本文 PDF XML SpringerLink
研究论文

镁热还原硅藻土控制合成锂离子电池负极材料纳米硅

  • Research Article

    Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries

    + Author Affiliations
    • Li-ion batteries (LIBs) have demonstrated great promise in electric vehicles and hybrid electric vehicles. However, commercial graphite materials, the current predominant anodes in LIBs, have a low theoretical capacity of only 372 mAh·g−1, which cannot meet the ever-increasing demand of LIBs for high energy density. Nanoscale Si is considered an ideal form of Si for the fabrication of LIB anodes as Si–C composites. Synthesis of nanoscale Si in a facile, cost-effective way, however, still poses a great challenge. In this work, nanoscale Si was prepared by a controlled magnesiothermic reaction using diatomite as the Si source. It was found that the nanoscale Si prepared under optimized conditions (800°C, 10 h) can deliver a high initial specific capacity (3053 mAh·g−1 on discharge, 2519 mAh·g−1 on charge) with a high first coulombic efficiency (82.5%). When using sand-milled diatomite as a precursor, the obtained nanoscale Si exhibited a well-dispersed morphology and had a higher first coulombic efficiency (85.6%). The Si–C (Si : graphite = 1:7 in weight) composite using Si from the sand-milled diatomite demonstrated a high specific capacity (over 700 mAh·g−1 at 100 mA·g−1), good rate capability (587 mAh·g−1 at 500 mA·g−1), and a long cycle life (480 mAh·g−1 after 200 cycles at 500 mA·g−1). This work gives a facile method to synthesize nanoscale Si with both high capacity and high first coulombic efficiency.

    • loading
    • [1]
      M. Armand and J.M. Tarascon, Building better batteries, Nature, 451(2008), No. 7179, p. 652. doi: 10.1038/451652a
      [2]
      N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett., 12(2012), No. 6, p. 3315. doi: 10.1021/nl3014814
      [3]
      H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7(2012), No. 5, p. 414. doi: 10.1016/j.nantod.2012.08.004
      [4]
      S. Xin, Y.G. Guo, and L.J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 45(2012), No. 10, p. 1759. doi: 10.1021/ar300094m
      [5]
      H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, Research on advanced materials for Li-ion batteries, Adv. Mater., 21(2009), No. 45, p. 4593. doi: 10.1002/adma.200901710
      [6]
      K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 311(2006), No. 5763, p. 977. doi: 10.1126/science.1122152
      [7]
      J. Park, G.P. Kim, I. Nam, S. Park, and J. Yi, One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries, Nanotechnology, 24(2012), No. 2, art. No. 025602.
      [8]
      J.H. Zhu, J. Yang, Z.X. Xu, J.L. Wang, Y.N. Nuli, X.D. Zhuang, and X.L. Feng, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries, Nanoscale, 9(2017), No. 25, p. 8871. doi: 10.1039/C7NR01545C
      [9]
      J.W. Liang, X.N. Li, Z.G. Hou, W.Q. Zhang, Y.C. Zhu, and Y.T. Qian, A Deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries, ACS Nano, 10(2016), No. 2, p. 2295. doi: 10.1021/acsnano.5b06995
      [10]
      J. Hassoun, S. Panero, P. Reale, and B. Scrosati, A new, sa fe, high-rate and high-energy polymer lithium-ion battery, Adv. Mater., 21(2009), No. 47, p. 4807. doi: 10.1002/adma.200900470
      [11]
      H.D. Chen, S.F. Wang, X.J. Liu, X.H. Hou, F.M. Chen, H. Pan, H.Q. Qin, K.H. Lam, Y.C. Xia, and G.F. Zhou, Double-coated Si-based composite composed with carbon layer and graphene sheets with void spaces for lithium-ion batteries, Electrochim. Acta, 288(2018), p. 134. doi: 10.1016/j.electacta.2018.09.008
      [12]
      J. Xie, G.Q. Wang, Y. Huo, S.C. Zhang, G.S. Cao, and X.B. Zhao, Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries, Electrochim. Acta, 135(2014), p. 94. doi: 10.1016/j.electacta.2014.05.012
      [13]
      M. Zhang, T.F. Zhang, Y.F. Ma, and Y.S. Chen, Latest development of nanostructured Si/C materials for lithium anode studies and applications, Energy Storage Mater., 4(2016), p. 1. doi: 10.1016/j.ensm.2016.02.001
      [14]
      A. Casimir, H.G. Zhang, O. Ogoke, J.C. Amine, J. Lu, and G. Wu, Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation, Nano Energy, 27(2016), p. 359. doi: 10.1016/j.nanoen.2016.07.023
      [15]
      G.X. Wang, S. Bewlay, L. Yang, J.Z. Wang, Y. Chen, J. Yao, H.K. Liu, and S.X. Dou, Nanostructured electrode materials for rechargeable lithium-ion battery applications, J. Mater. Sci. Technol., 21(2005), No. S1, p. 17.
      [16]
      B.R. Liu, P. Soares, C. Checkles, Y. Zhao, and G.H. Yu, Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes, Nano Lett., 13(2013), No. 7, p. 3414. doi: 10.1021/nl401880v
      [17]
      R. Teki, M.K. Datta, R. Krishnan, T.C. Parker, T.M. Lu, P.N. Kumta, and N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5(2009), No. 20, p. 2236. doi: 10.1002/smll.200900382
      [18]
      J.L. Goldman, B.R. Long, A.A. Gewirth, and R.G. Nuzzo, Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes, Adv. Funct. Mater., 21(2011), No. 13, p. 2412. doi: 10.1002/adfm.201002487
      [19]
      K.X. Xiang, X.Y. Wang, M.F. Chen, Y.Q. Shen, H.B. Shu, and X.K. Yang, Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode, J. Alloys Compd., 695(2017), p. 100. doi: 10.1016/j.jallcom.2016.10.165
      [20]
      U. Kasavajjula, C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163(2007), No. 2, p. 1003. doi: 10.1016/j.jpowsour.2006.09.084
      [21]
      A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9(2010), No. 4, p. 353. doi: 10.1038/nmat2725
      [22]
      A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO‒C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
      [23]
      H.D. Chen, K.X. Shen, X.H. Hou, G.Z. Zhang, S.F. Wang, F.M. Chen, L.J. Fu, H.Q. Qin, Y.C. Xia, and G.F. Zhou, Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithium ion batteries, Appl. Surf. Sci., 470(2019), p. 496. doi: 10.1016/j.apsusc.2018.11.065
      [24]
      H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.B. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7(2012), No. 5, p. 310. doi: 10.1038/nnano.2012.35
      [25]
      I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334(2011), No. 6052, p. 75. doi: 10.1126/science.1209150
      [26]
      Y. Chen, S. Zeng, J.F. Qian, Y.D. Wang, Y.L. Cao, H.X. Yang, and X.P. Ai, Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 5, p. 3508. doi: 10.1021/am4056672
      [27]
      D.J. Lee, H. Lee, M.H. Ryou, G.B. Han, J.N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, and J.K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries, ACS Appl. Mater. Interfaces, 5(2013), No. 22, p. 12005. doi: 10.1021/am403798a
      [28]
      Z.L. Zhang, Y.H. Wang, W.F. Ren, Q.Q. Tan, Y.F. Chen, H. Li, Z.Y. Zhong, and F.B. Su, Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries, Angew. Chem. Int. Ed., 126(2014), No. 20, p. 5265. doi: 10.1002/ange.201310412
      [29]
      S.Y. Lim, S. Chae, S.H. Jung, Y. Hyeon, W. Jang, W.S. Yoon, J.Y. Choi, and D. Whang, Loose-fit graphitic encapsulation of silicon nanowire for one-dimensional Si anode design, J. Mater. Sci. Technol., 33(2017), No. 10, p. 1120. doi: 10.1016/j.jmst.2017.07.003
      [30]
      W.Y. Li, Y.B. Tang, W.P. Kang, Z.Y. Zhang, X. Yang, Y. Zhu, W.J. Zhang, and C.S. Lee, Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes, Small, 11(2015), No. 11, p. 1345. doi: 10.1002/smll.201402072
      [31]
      H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, and Y.C. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature, Carbon, 130(2018), p. 433. doi: 10.1016/j.carbon.2018.01.021
      [32]
      S. Chae, N. Kim, J. Ma, J. Cho, and M. Ko, One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries, Adv. Energy Mater., 7(2017), No. 15, art. No. 1700071.
      [33]
      M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444. doi: 10.1021/cr500207g
      [34]
      H. Wang, J. Xie, S.C. Zhang, G.S. Cao, and X.B. Zhao, Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials, RSC Adv., 6(2016), No. 74, p. 69882. doi: 10.1039/C6RA13114J
      [35]
      H. Wolf, Z. Pajkic, T. Gerdes, and M. Willert-Porada, Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition, J. Power Sources, 190(2009), No. 1, p. 157. doi: 10.1016/j.jpowsour.2008.07.035
      [36]
      J.Y. Liu, N. Li, M.D. Goodman, H.G. Zhang, E.S. Epstein, B. Huang, Z. Pan, J. Kim, J.H. Choi, X.J. Huang, J.H. Liu, K.J. Hsia, S.J. Dillon, and P.V. Braun, Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes, ACS Nano, 9(2015), No. 2, p. 1985. doi: 10.1021/nn507003z
      [37]
      S.S. Hwang, C.G. Cho, and H. Kim, Polymer microsphere embedded Si/graphite composite anode material for lithium rechargeable battery, Electrochim. Acta, 55(2010), No. 9, p. 3236. doi: 10.1016/j.electacta.2010.01.044
      [38]
      S. Choi, T. Bok, J. Ryu, J.I. Lee, J. Cho, and S. Park, Revisit of metallothermic reduction for macroporous Si: Compromise between capacity and volume expansion for practical Li-ion battery, Nano Energy, 12(2015), p. 161. doi: 10.1016/j.nanoen.2014.12.010
      [39]
      J.H. Jeong, K.H. Kim, D.W. Jung, K. Kim, S.M. Lee, and E.S. Oh, High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries, J. Power Sources, 300(2015), p. 182. doi: 10.1016/j.jpowsour.2015.09.064
      [40]
      M.S. Wang, L.Z. Fan, M. Huang, J.H. Li, and X.H. Qu, Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries, J. Power Sources, 219(2012), p. 29. doi: 10.1016/j.jpowsour.2012.06.102
      [41]
      Y. Wang, Y.D. Wu, K.H. Wu, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 831. doi: 10.1007/s12613-019-1794-9
      [42]
      S. Fang, L.F. Shen, Z.K. Tong, H. Zheng, F. Zhang, and X.G. Zhang, Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability, Nanoscale, 7(2015), No. 16, p. 7409. doi: 10.1039/C5NR00132C
      [43]
      X.F. Tang, G.W. Wen, and Y. Song, Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries, J. Alloys Compd., 739(2018), p. 510. doi: 10.1016/j.jallcom.2017.12.331

    Catalog


    • /

      返回文章
      返回