留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 6
Jun.  2020

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1076
  • HTML全文浏览量:  244
  • PDF下载量:  35
  • 被引次数: 0
Xiao-hui Li, Jue Kou, Ti-chang Sun, Shi-chao Wu, and Yong-qiang Zhao, Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 745-753. https://doi.org/10.1007/s12613-019-1903-9
Cite this article as:
Xiao-hui Li, Jue Kou, Ti-chang Sun, Shi-chao Wu, and Yong-qiang Zhao, Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3, Int. J. Miner. Metall. Mater., 27(2020), No. 6, pp. 745-753. https://doi.org/10.1007/s12613-019-1903-9
引用本文 PDF XML SpringerLink
研究论文

添加CaCO3后碳热还原钒钛磁铁矿精矿过程中钛酸钙的形成

  • Research Article

    Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3

    + Author Affiliations
    • The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate (VTC) by adding CaCO3 was investigated. Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and CaCO3 in a reductive atmosphere, where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3. The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test. Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate, and the optimum conditions were a CaCO3 dosage of 18wt% and a reduction temperature of 1400°C. Additionally, scanning electron microscopy–energy dispersive spectrometry (SEM–EDS) analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50 μm. Hence, the separation of calcium titanate and metallic iron will be the focus in the future study.

    • loading
    • [1]
      H.Y. Zhao, Y.W. Duan, X. Sun, Synthesis and characterization of CaTiO3 particles with controlled shape and size, New J. Chem., 37(2013), No. 4, p. 986. doi: 10.1039/c3nj40974k
      [2]
      X.J. Lei, B.Q. Xu. B. Yang, B.B. Xu, and X.T. Guo, A novel method of synthesis and microstructural investigation of calcium titanate powders, J. Alloys Compd., 690(2017), p. 916. doi: 10.1016/j.jallcom.2016.08.213
      [3]
      S. Holliday and A. Stanishevsky, Crystallization of CaTiO3 by sol–gel synthesis and rapid thermal processing, Surf. Coat. Technol., 188-189(2004), p. 741. doi: 10.1016/j.surfcoat.2004.07.044
      [4]
      S. Palaniandy and N.H. Jamil, Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles, J. Alloys Compd., 476(2009), No. 1-2, p. 894. doi: 10.1016/j.jallcom.2008.09.133
      [5]
      J. Yang, L. Zhang, J.D. Wang, and J.N. Ji, Synthesis of calcium titanate by high temperature calcination with calcium hydroxide as calcium source, Refractories, 51(2017), No. 6, p. 452.
      [6]
      S. Manafi, M. Jafarian, and M. Jafarian, Determining the optimal conditions for calcium titanate nanostructures synthesized by mechanical alloying method, Adv. Ceram. Prog., 1(2015), No. 1, p. 11.
      [7]
      Z.H. Li, Z.C. Wang, and G. Li, Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method, Powder Technol., 287(2016), p. 256. doi: 10.1016/j.powtec.2015.09.008
      [8]
      F.L. Yang and V. Hlavacek, Effective extraction of titanium from rutile by a low-temperature chloride process, AIChE J., 46(2000), No. 2, p. 355. doi: 10.1002/aic.690460213
      [9]
      W.D. Tang, X.X. Xue, S.T. Yang, L.H. Zhang, and Z. Huang, Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 871. doi: 10.1007/s12613-018-1636-1
      [10]
      M. Imtiaz, M.S. Rizwan, S.L. Xiong, H.L. Li, M. Ashraf, S.M. Shahzad, M. Shahzad, M. Rizwan, and S.X. Tu, Vanadium, recent advancements and research prospects: A review, Environ. Int., 80(2015), p. 79. doi: 10.1016/j.envint.2015.03.018
      [11]
      Y.Z. Xue, X.F. Wang, H.J. Wang, and W.C. Li, On comprehensive utilization of vanadium–titanium magnetite resources in Panzhihua-Xichang region of Sichuan province, Nat. Resour. Econ. China, 30(2017), No. 4, p. 9.
      [12]
      H.X. Mao, R.D. Zhang, X.L. Lv, C.G. Bai, and X.B. Huang, Effect of surface properties of iron ores on their granulation behavior, ISIJ Int., 53(2013), No. 9, p. 1491. doi: 10.2355/isijinternational.53.1491
      [13]
      L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684. doi: 10.1016/j.mineng.2007.01.003
      [14]
      C. Feng, M.S. Chu, J. Tang, and Z.G. Liu, Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 609. doi: 10.1007/s12613-018-1608-5
      [15]
      W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying, Reduction behavior of vanadium–titanium magnetite carbon composite hot briquette in blast furnace process, Powder Technol., 342(2019), p. 214. doi: 10.1016/j.powtec.2018.09.069
      [16]
      B.C. Jena, W. Dresler, and I.G. Reilly, Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Miner. Eng., 8(1995), No. 1-2, p. 159. doi: 10.1016/0892-6875(94)00110-X
      [17]
      T.Y. Hu, T.C. Sun, J. Kou, C. Geng, X.P. Wang, and C. Chen, Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust, Int. J. Miner. Process., 165(2017), p. 28. doi: 10.1016/j.minpro.2017.06.003
      [18]
      S. Samanta, M.C. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey, Mineralogy and carbothermal reduction behavior of vanadium-bearing titaniferous magnetite ore in Eastern India, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 917. doi: 10.1007/s12613-013-0815-3
      [19]
      G.M. Zhang, K.Q. Feng, and H.F. Yue, Theoretical analyses and experimental investigations of selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates for preparation of iron-based wear-resistant material, JOM, 68(2016), No. 9, p. 2525. doi: 10.1007/s11837-016-2035-6
      [20]
      Y.M. Zhang, L.Y. Yi, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification–direct reduction coupled process, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 504. doi: 10.1007/s12613-017-1431-4
      [21]
      Y. Man, J.X. Feng, F.J. Li, Q. Ge, Y.M. Chen, and J.Z. Zhou, Influence of temperature and time on reduction behavior in iron ore–coal composite pellets, Powder Technol., 256(2014), p. 361. doi: 10.1016/j.powtec.2014.02.039
      [22]
      Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152. doi: 10.1007/s12613-019-1719-7
      [23]
      B.K. Sarkar, S. Samanta, R. Dey, and G.C. Das, A study on reduction kinetics of titaniferous magnetite ore using lean grade coal, Int. J. Miner. Process., 152(2016), p. 36. doi: 10.1016/j.minpro.2016.05.011
      [24]
      C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction–melting–magnetic separation processing, JOM., 69(2017), No. 10, p. 1801. doi: 10.1007/s11837-017-2507-3
      [25]
      S.T. Yang, M. Zhou, T. Jiang, and X.X. Xue, Isothermal reduction kinetics and mineral phase of chromium-bearing vanadium–titanium sinter reduced with CO gas at 873–1273 K, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 145. doi: 10.1007/s12613-018-1557-z
      [26]
      J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20. doi: 10.1016/j.minpro.2015.03.007
      [27]
      Z.G. Liu, M.S. Chu, H.T. Wang, W. Zhao, and X.X. Xue, Effect of MgO content in sinter on the softening-melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 25. doi: 10.1007/s12613-016-1207-2
      [28]
      T. Jiang, J. Xu, S.F. Guan, and X.X. Xue, Study on coal-based direct reduction of high-chromium vanadium–titanium magnetite, J. Northeastern Univ. (Nat. Sci.), 36(2015), No. 1, p. 77.
      [29]
      S.M. Jung, Effects of CaO/CaCO3 on the carbothermic reduction of titanomagnetite ores, Metall. Mater. Trans. B., 46(2015), No. 3, p. 1162. doi: 10.1007/s11663-015-0341-y
      [30]
      L.H. Zhou, Effects of CaO as an additive on the reduction of the vanadic–titanomagnetite–coal mixed pellets, J. Mater. Sci. Eng., 28(2010), No. 3, p. 345.
      [31]
      C. Chen, T.C. Sun, X.P. Wang, and T.Y. Hu, Effects of MgO on the reduction of vanadium titanomagnetite concentrates with char, JOM, 69(2017), No. 10, p. 1759. doi: 10.1007/s11837-017-2388-5
      [32]
      C. Chen, T.C. Sun, J. Kou, and Y.Q. Zhao, Carbothermic reduction of vanadium titanomagnetite concentrate with magnesium compounds, Chin. J. Rare Met., 42(2018), No. 7, p. 765.
      [33]
      X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of temperature on Fe and Ti in carbothermic reduction of vanadium titanomagnetite with adding MgO, Physicochem. Probl. Miner. Process., 55(2019), No. 4, p. 917. doi: https://doi.org/10.5277/ppmp19012
      [34]
      W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO, J. Iron Steel Res. Int., 24(2017), No. 1, p. 34. doi: 10.1016/S1006-706X(17)30006-7
      [35]
      Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, J. Alloys Compd., 706(2017), p. 546. doi: 10.1016/j.jallcom.2017.02.264
      [36]
      Y.Q. Zhao, T.C. Sun, H.Y. Zhao, X.H. Li, and X.P. Wang, Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore, ISIJ Int., 58(2018), No. 10, p. 1768. doi: 10.2355/isijinternational.ISIJINT-2018-186

    Catalog


    • /

      返回文章
      返回