留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 1
Jan.  2020

图(14)

数据统计

分享

计量
  • 文章访问数:  1839
  • HTML全文浏览量:  238
  • PDF下载量:  50
  • 被引次数: 0
Ping-hu Chen, Yun Zhang, Rui-qing Li, Yan-xing Liu, and Song-sheng Zeng, Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 100-111. https://doi.org/10.1007/s12613-019-1909-3
Cite this article as:
Ping-hu Chen, Yun Zhang, Rui-qing Li, Yan-xing Liu, and Song-sheng Zeng, Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 100-111. https://doi.org/10.1007/s12613-019-1909-3
引用本文 PDF XML SpringerLink
研究论文

碳分配处理对原位VCp增强铁基复合材料组织、力学性能和耐磨性的影响

  • Research Article

    Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite

    + Author Affiliations
    • The wear resistance of iron (Fe)-matrix materials could be improved through the in situ formation of vanadium carbide particles (VCp) with high hardness. However, brittleness and low impact toughness limit their application in several industries due to addition of higher carbon content. Carbon-partitioning treatment plays an important role in tuning the microstructure and mechanical properties of in situ VCp-reinforced Fe-matrix composite. In this study, the influences of carbon-partitioning temperatures and times on the microstructure, mechanical properties, and wear resistance of in situ VCp-reinforced Fe-matrix composite were investigated. The experimental results indicated that a certain amount of retained austenite could be stabilized at room temperature through the carbon-partitioning treatment. Microhardness of in situ VCp-reinforced Fe-matrix composite under carbon-partitioning treatment could be decreased, but impact toughness was improved accordingly when wear resistance was enhanced. In addition, the enhancement of wear resistance could be attributed to transformation-induced plasticity (TRIP) effect, and phase transformation was caused from γ-Fe (face-centered cubic structure, fcc) to α-Fe (body-centered cubic structure, bcc) under a certain load.

    • loading
    • [1]
      R.R. Moskalyk and M.A. Alfantazi, Processing of vanadium: a review, Miner. Eng., 16(2003), No. 9, p. 793. doi: 10.1016/S0892-6875(03)00213-9
      [2]
      M. Radulovic, M. Fiset, K. Peev, and M. Tomovic, The influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons, J. Mater. Sci., 29(1994), No. 19, p. 5085. doi: 10.1007/BF01151101
      [3]
      L.S. Zhong, M. Hojamberdiev, F.X. Ye, W. Hong, and Y.H. Xu, Fabrication and microstructure of in situ vanadium carbide ceramic particulates-reinforced iron matrix composites, Ceram. Int., 39(2013), No. 1, p. 731. doi: 10.1016/j.ceramint.2012.06.085
      [4]
      L. He, Y. Liu, B.H. Li, H. Cao, and J. Li, Reaction synthesis of in situ vanadium carbide particulates-reinforced iron matrix composites by spark plasma sintering, J. Mater. Sci., 45(2010), No. 9, p. 2538. doi: 10.1007/s10853-010-4295-9
      [5]
      L.S. Zhong, F.X. Ye, Y.H. Xu, and J.S. Li, Microstructure and abrasive wear characteristics of in situ vanadium carbide particulate-reinforced iron matrix composites, Mater. Des., 54(2014), p. 564. doi: 10.1016/j.matdes.2013.08.097
      [6]
      Y.S. Wang, Y.C. Ding, J. Wang, F.J. Cheng, and J.G. Shi, In situ production of vanadium carbide particulates reinforced iron matrix surface composite by cast-sintering, Mater. Des., 28(2007), No. 7, p. 2202. doi: 10.1016/j.matdes.2006.07.008
      [7]
      M. Kawalec and E. Olejnik, Abrasive wear resistance of cast iron with precipitates of spheroidal VC carbides, Arch. Foundry Eng., 12(2012), No. 2, p. 221. doi: 10.2478/v10266-012-0065-2
      [8]
      W.M. Zhao, Z.X. Liu, Z.L. Ju, B. Liao, and X.G. Chen, Effects of vanadium and rare-earth on carbides and properties of high chromium cast iron, Mater. Sci. Forum, 575-578(2008), p. 1414. doi: 10.4028/www.scientific.net/MSF.575-578.1414
      [9]
      F.X. Ye, M. Hojamberdiev, Y.H. Xu, L.S. Zhong, H.H. Yan, and Z. Chen, (Fe,Cr)7C3-Fe surface gradient composite: Microstructure, microhardness, and wear resistance, Mater. Chem. Phys., 147(2014), No. 3, p. 823. doi: 10.1016/j.matchemphys.2014.06.026
      [10]
      S.Z. Wei, J.H. Zhu, and L.J. Xu, Research on wear resistance of high speed steel with high vanadium content, Mater. Sci. Eng. A, 404(2005), No. 1-2, p. 138. doi: 10.1016/j.msea.2005.05.062
      [11]
      S.Z. Wei, J.H. Zhu, and L.J. Xu, Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel, Tribol. Int., 39(2006), No. 7, p. 641. doi: 10.1016/j.triboint.2005.04.035
      [12]
      S.Z. Wei, J.H. Zhu, L.J. Xu, and R. Long, Effects of carbon on microstructures and properties of high vanadium high-speed steel, Mater. Des., 27(2006), No. 1, p. 58. doi: 10.1016/j.matdes.2004.09.027
      [13]
      J.X. Liu, Z.W. Shi, P.J. Ying, S.Z. Guo, W.L. Ji, and R. Long, Effect of carbon on frictional wear behaviours of high vanadium high speed steel under dry sliding condition, Mater. Sci. Forum, 654-656(2010), p. 370. doi: 10.4028/www.scientific.net/MSF.654-656.370
      [14]
      L.J. Xu, J.D. Xing, S.Z. Wei, Y.Z. Zhang, and R. Long, Study on relative wear resistance and wear stability of high-speed steel with high vanadium content, Wear, 262(2007), No. 3-4, p. 253. doi: 10.1016/j.wear.2006.05.016
      [15]
      M. Krüger, High temperature compression strength and oxidation of a V−9Si−13B alloy, Scripta Mater., 121(2016), p. 75. doi: 10.1016/j.scriptamat.2016.04.042
      [16]
      P.H. Chen, Z.L. Liu, R.Q. Li, and X.Q. Li, The effect of manganese additions on the high temperature oxidation behaviour of the high-vanadium cast iron, J. Alloys Compd., 767(2018), p. 181. doi: 10.1016/j.jallcom.2018.07.113
      [17]
      P.H. Chen, R.Q. Li, R.P. Jiang, S.S. Zeng, Y. Zhang, and X.Q. Li, High-temperature oxidation resistance of VCps-reinforced Fe-matrix composites using an in-situ reaction, AIP Adv., 9(2019), No. 1, p. 015319. doi: 10.1063/1.5013065
      [18]
      V.F. Zackay, M.D. Bhandarkar, and E.R. Parker, The role of deformation-induced phase transformations in the plasticity of some iron-base alloys, [In] J.J. Burke and V. Weiss, eds., Advances in Deformation Processing, Boston, MA, 1978, p. 351.
      [19]
      L. Skálová, R. Divišová, and D. Jandová, Thermo-mechanical processing of low-alloy TRIP-steel, J. Mater. Process. Technol., 175(2006), No. 1-3, p. 387. doi: 10.1016/j.jmatprotec.2005.04.067
      [20]
      J. Speer, D.K. Matlock, B.C. de Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611. doi: 10.1016/S1359-6454(03)00059-4
      [21]
      J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. de Cooman, and D.V. Edmonds, Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3591. doi: 10.1007/s11661-011-0869-7
      [22]
      V.F. Zackay and T.H. Hazlett, Some plastic properties of nickel alloys, Acta Metall., 1(1953), No. 6, p. 624. doi: 10.1016/0001-6160(53)90019-4
      [23]
      P.J. Gibbs, E. de Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3691. doi: 10.1007/s11661-011-0687-y
      [24]
      M. Mansourinejad and M. Ketabchi, Influence of strain state on the kinetics of martensitic transformation induced plasticity (TRIP) in AISI 304 stainless steel, Steel Res. Int., 89(2018), No. 3, p. 1700359. doi: 10.1002/srin.201700359
      [25]
      A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment, Acta Mater., 56(2008), No. 1, p. 16. doi: 10.1016/j.actamat.2007.08.051
      [26]
      J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 219. doi: 10.1016/j.cossms.2004.09.003
      [27]
      Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, and H.X. Li, Microstructural evolution and deformation behavior in the Fe−(6, 8.5)Mn−3Al−0.2C TRIP steels, Mater. Sci. Eng. A, 672(2016), p. 161. doi: 10.1016/j.msea.2016.06.078
      [28]
      P.H. Chen, Y.B. Li, R.Q. Li, R.P. Jiang, S.S. Zeng, and X.Q. Li, Microstructure, mechanical properties, and wear resistance of VCp-reinforced Fe-matrix composites treated by Q&P process, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1060. doi: 10.1007/s12613-018-1657-9
      [29]
      E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer, Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels, Metall. Mater. Trans. A, 39(2008), p. 2586. doi: 10.1007/s11661-008-9609-z
      [30]
      X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel, Scripta Mater., 68(2013), No. 5, p. 321. doi: 10.1016/j.scriptamat.2012.11.003
      [31]
      L.J. Xu, S.Z. Wei, J.D. Xing, and R. Long, Effects of carbon content and sliding ratio on wear behavior of high-vanadium high-speed steel (HVHSS) under high-stress rolling-sliding contact, Tribol. Int., 70(2014), p. 34. doi: 10.1016/j.triboint.2013.09.021
      [32]
      V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevskaya, K. Kusumoto, and K. Yamamoto, Effect of vanadium and chromium on the microstructural features of V−Cr−Mn−Ni spheroidal carbide cast irons, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1096. doi: 10.1007/s12613-014-1014-6
      [33]
      L.J. Xu, J.D. Xing, S.Z. Wei, Y.Z. Zhang, and R. Long, Investigation on wear behaviors of high-vanadium high-speed steel compared with high-chromium cast iron under rolling contact condition, Mater. Sci. Eng. A, 434(2006), No. 1-2, p. 63. doi: 10.1016/j.msea.2006.07.047
      [34]
      L.J. Xu, S.Z. Wei, F.N. Xiao, H. Zhou, G.S. Zhang, and J.W. Li, Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content, Wear, 376-377(2017), p. 968. doi: 10.1016/j.wear.2017.01.021
      [35]
      V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Pastukhova, Y.G. Chabak, and K.Kusumoto, Abrasive resistance of metastable V−Cr−Mn−Ni spheroidal carbide cast irons using the factorial design method, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 645. doi: 10.1007/s12613-016-1277-1
      [36]
      V.G. Efremenko, K. Shimizu, T.V. Pastukhova, Y.G. Chabak, K. Kusumoto, and A.V. Efremenko, Effect of bulk heat treatment and plasma surface hardening on the microstructure and erosion wear resistance of complex-alloyed cast irons with spheroidal vanadium carbides, J. Frict. Wear, 38(2017), No. 1, p. 58. doi: 10.3103/S1068366617010056
      [37]
      V. Efremenko, K. Shimizu, T. Pastukhova, Y. Chabak, M. Brykov, K. Kusumoto, and A. Efremenko, Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents, Int. J. Mater. Res., 109(2018), No. 2, p. 147. doi: 10.3139/146.111583

    Catalog


    • /

      返回文章
      返回