Cite this article as: |
Xiao-feng Zhu, Ting-an Zhang, and Guo-zhi Lü, Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 472-482. https://doi.org/10.1007/s12613-019-1913-7 |
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.
[1] |
Y.X. Wang, T.A. Zhang, G.Z. Lyu, F.F. Guo, W.G. Zhang, and Y.H. Zhang, Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue, J. Cleaner Prod., 188(2018), p. 456. doi: 10.1016/j.jclepro.2018.04.009
|
[2] |
B.N. Deng, G.H. Li, J. Luo, J.H. Zeng, M.J. Rao, Z.W. Peng, and T. Jiang, Alkaline digestion behavior and alumina extraction from sodium aluminosilicate generated in pyrometallurgical process, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1380. doi: 10.1007/s12613-018-1692-6
|
[3] |
G.Z. Lu, T.A. Zhang, X.F. Zhu, Y. Liu, Y .X, Wa ng, F.F. Guo, Q.Y. Zhao, and C.Z. Zheng, Calcification–carbonation method for cleaner alumina production and CO2 utilization, JOM, 66(2014), No. 9, p. 1616. doi: 10.1007/s11837-014-1090-0
|
[4] |
X.L. Pan, H.Y. Yu, G.F. Tu, and S.W. Bi, Effects of precipitation activity of desilication products (DSPs) on stability of sodium aluminate solution, Hydrometallurgy, 165(2016), p. 261. doi: 10.1016/j.hydromet.2016.01.034
|
[5] |
X.M. Liu, N. Zhang, Y. Yao, H.H. Sun, and H. Feng, Micro-structural characterization of the hydration products of bauxite-calcination-method red mud–coal gangue based cementitious materials, J. Hazard. Mater., 262(2013), p. 428. doi: 10.1016/j.jhazmat.2013.08.078
|
[6] |
B. Xu and P. Smith, The effect of iron sources on caustic and alumina recovery from synthetic bayer DSP (sodalite), Hydrometallurgy, 129-130(2012), p. 26. doi: 10.1016/j.hydromet.2012.08.013
|
[7] |
E. Mukiza, L.L. Zhang, X.M. Liu, and N. Zhang, Utilization of red mud in road base and subgrade materials: A review, Resour. Conserv. Recycl., 141(2019), p. 187. doi: 10.1016/j.resconrec.2018.10.031
|
[8] |
X.P. Wang, T.C. Sun, J. Kou, Z.C. Li, and Y. Tian, Feasibility of co-reduction roasting of a saprolitic laterite ore and waste red mud, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 591. doi: 10.1007/s12613-018-1606-7
|
[9] |
N. Zhang, H.X. Li, and X.M. Liu, Hydration kinetics of cementitious materials composed of red mud and coal gangue, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1215. doi: 10.1007/s12613-016-1341-x
|
[10] |
G.Z. Lu, T.A. Zhang, C.Z. Zheng, X.F. Zhu, W.G. Zhang, and Y.X. Wang, The influence of the silicon saturation coefficient on a calcification–carbonation method for clean and efficient use of bauxite, Hydrometallurgy, 174(2017), p. 97. doi: 10.1016/j.hydromet.2017.07.001
|
[11] |
R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lv, and L.Q. Xie, Calcification–carbonation method for red mud processing, J. Hazard. Mater., 316(2016), p. 94. doi: 10.1016/j.jhazmat.2016.04.072
|
[12] |
R.B. Li, X.L. Li, D.X. Wang, Y. Liu, and T.A. Zhang, Calcification reaction of red mud slurry with lime, Powder Technol., 333(2018), p. 277. doi: 10.1016/j.powtec.2018.04.031
|
[13] |
L.Q. Xie, T.A. Zhang, G.Z. Lv, and X.F. Zhu, Direct calcification–carbonation method for processing of Bayer process red mud, Russ. J. Non-Ferrous Met., 59(2018), No. 2, p. 142. doi: 10.3103/S1067821218020050
|
[14] |
T.A. Zhang, X.F. Zhu, G.Z. Lv, L. Pan, Y. Liu, Q.Y. Zhao, Y. Li, X.L. Jiang, and J.C. He, Calcification–carbonation method for alumina production by using low-grade bauxite, [in] B.A. Sadler, eds., Light Metals 2013. The Minerals, Metals & Materials Series, Springer, Cham, 2016, p. 233.
|
[15] |
X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lv, F.F. Guo, and X. Li, Experimental study on calcification–carbonation process for alumina production by using mid–low grade bauxite, J. Mater. Metall., 14(2015), No. 3, p. 182.
|
[16] |
W.G. Zhang, T.A. Zhang, G.Z. Lv, X.H. Zhang, X.F. Zhu, Y.X. Wang, and L. Wang, Study on effective extraction of Al and Fe from high-iron bauxite through “calcification-carbonization” method, [in] E. Williams, eds., Light Metals 2016, Springer, Cham, 2016, p. 15.
|
[17] |
X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lü, and W.G. Zhang, Recovery of alkali and alumina from Bayer red mud by the calcification–carbonation method, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 257. doi: 10.1007/s12613-016-1234-z
|
[18] |
L.Q. Xie, T.A. Zhang, G.Z. Lv, J.L. Yang, and Y.X. Wang, The effect of NaOH on the direct calcification–carbonation method for processing of Bayer process red mud, Green Process. Synth., 7(2018), No. 6, p. 546. doi: 10.1515/gps-2017-0070
|
[19] |
G.Z. Lü, T.A. Zhang, X.F. Zhu, C.Z. Zheng, Y.X. Wang, W.G. Zhang, and Z.M. Zhang, Silicon saturation coefficient changes in hydrogarnets during the Bayer process with lime addition, Chin. J. Chem. Eng., 27(2019), No. 8, p. 1965. doi: 10.1016/j.cjche.2018.10.016
|
[20] |
X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lu, W.G. Zhang, C. Wang, and A.C. Zhao, Non-isothermal decomposition kinetics of hydrogarnet in sodium carbonate solution, Chin. J. Chem. Eng., 23(2015), No. 10, p. 1634. doi: 10.1016/j.cjche.2015.07.029
|
[21] |
T. Matschei, B. Lothenbach, and F.P. Glasser, Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O, Cem. Concr. Res., 37(2007), No. 10, p. 1379. doi: 10.1016/j.cemconres.2007.06.002
|
[22] |
W.K. Wu, Anisotropic Dissolution of Calcite and Epitaxial Crystal Growth of Aragonite-Type Carbonates [Dissertation], Guangxi University, Nanning, 2014, p. 3.
|
[23] |
K.W. Hu, Studies on Preparation and Formation Mechanism of Aragonite Calcium Carbonate Whisker [Dissertation], Chengdu University of Technology, Chengdu, 2006, p. 9.
|
[24] |
H. Konno, Y. Nanri, and M. Kitamura, Effect of NaOH on aragonite precipitation in batch and continuous crystallization in causticizing reaction, Powder Technol., 129(2003), No. 1-3, p. 15. doi: 10.1016/S0032-5910(02)00275-9
|
[25] |
R.M. Santos, P. Ceulemans, and T. van Gerven, Synthesis of pure aragonite by sonochemical mineral carbonation, Chem. Eng. Res. Des., 90(2012), No. 6, p. 715. doi: 10.1016/j.cherd.2011.11.022
|
[26] |
Z.S. Hu, M.H. Shao, Q. Cai, S.G. Ding, C.H. Zhong, X.P. Wei, and Y.L. Deng, Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride, J. Mater. Process. Technol., 209(2009), No. 3, p. 1607. doi: 10.1016/j.jmatprotec.2008.04.008
|
[27] |
Y.G. Liang, B.J. Cheng, Y.B. Si, D.J. Cao, H.Y. Jiang, G.M. Han, and X.H. Liu, Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis, Renewable Energy, 68(2014), p. 111. doi: 10.1016/j.renene.2014.01.041
|