留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 4
Apr.  2020

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1433
  • HTML全文浏览量:  282
  • PDF下载量:  35
  • 被引次数: 0
Mingwen Chen, Zidong Wang, Wei Yang, Renji Sun, and Xinfeng Wang, Temperature distribution in front of the liquid-solid interface in the undercooled pure melt influenced by a transverse far field flow, J. Univ. Sci. Technol. Beijing, 14(2007), No. 6, pp. 495-500. https://doi.org/10.1016/S1005-8850(07)60116-9
Cite this article as:
Wei Liu, You-hui Jiang, Hui Guo, Yue Zhang, Ai-min Zhao, and Yao Huang, Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 483-493. https://doi.org/10.1007/s12613-019-1916-4
引用本文 PDF XML SpringerLink
研究论文

超细贝氏体钢在低温等温淬火下的力学性能和耐磨性

  • Research Article

    Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature

    + Author Affiliations
    • The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated. Scanning electron microscopy (SEM) and X-ray diffraction were used to analyze the microstructure. The worn surfaces were observed via laser scanning confocal microscopy and SEM. Results indicated that, under low austempering temperatures, the mechanical properties differed, and the wear resistance remained basically unchanged. The tensile strength of the samples was above 1800 MPa, but only one sample austempered at 230°C had an elongation of more than 10%. The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads. The samples showed little difference in wear resistance at different isothermal temperatures, whereas the thickness of their deformed layers varied greatly. The results are related to the initial hardness of the sample and the stability of the retained austenite. Meanwhile, the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.

    • [1]
      F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Very strong low temperature bainite, Meter. Sci. Technol., 18(2002), No. 3, p. 279. doi: 10.1179/026708301225000725
      [2]
      Z.W. Hu, G. Xu, H.J. Hu, L. Wang, and Z.L. Xue, In situ measured growth rates of bainite plates in an Fe−C−Mn−Si superbainitic steel, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 371. doi: 10.1007/s12613-014-0918-5
      [3]
      H.L. Fan, A.M. Zhao, Q.C. Li, H. Guo, and J.G. He, Effects of ausforming strain on bainite transformation in nanostructured bainite steel, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 264. doi: 10.1007/s12613-017-1404-7
      [4]
      A. Behzad, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1010. doi: 10.1007/s12613-017-1490-6
      [5]
      J. Zhao, K. Guo, Y.M. He, Y.F. Wang, and T.S. Wang, Extremely high strength achievement in medium-C nanobainite steel, Scripta Mater., 152(2018), p. 20. doi: 10.1016/j.scriptamat.2018.04.005
      [6]
      J.G. He, A.M. Zhao, C. Zhi, and H.L. Fan, Acceleration of nanobainite transformation by multi-step ausforming process, Scripta Mater., 107(2015), p. 71. doi: 10.1016/j.scriptamat.2015.05.023
      [7]
      H. Guo, X.Y. Feng, A.M. Zhao, Q. Li, and J. Ma, Influence of prior martensite on bainite transformation, microstructures, and mechanical properties in ultra-fine bainitic steel, Materials, 12(2019), No. 3, p. 527. doi: 10.3390/ma12030527
      [8]
      A. Kumar and A. Singh, Toughness dependence of nano-bainite on phase fraction and morphology, Mater. Sci. Eng. A, 729(2018), p. 439. doi: 10.1016/j.msea.2018.05.106
      [9]
      M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a new nanostructured, high-Si bainitic steel with lower cost production, Mater. Des., 32(2011), No. 6, p. 3248. doi: 10.1016/j.matdes.2011.02.031
      [10]
      X.H. Lu, D.S. Qian, W. Li, and X.J. Jin, Enhanced toughness of bearing steel by combining prior cold deformation with martensite pre-quenching and bainite transformation, Mater. Lett., 234(2019), p. 5. doi: 10.1016/j.matlet.2018.09.017
      [11]
      H. Guo, A.M. Zhao, C. Zhi, R. Ding, and J.X. Wang, Two-body abrasion wear mechanism of super bainitic steel, Mater. Sci. Technol., 33(2017), No. 7, p. 893. doi: 10.1080/02670836.2016.1245239
      [12]
      V.G. Efremenkoa, O. Hesse, T. Friedrich, M. Kunert, M.N. Brykov, K. Shimizu, V.I. Zurnadzhy, and P. Šuchmann, Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite, Wear, 418-419(2019), p. 24. doi: 10.1016/j.wear.2018.11.003
      [13]
      S. Das Bakshi, P.H. Shipway, and H.K.D.H. Bhadeshia, Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite, Wear, 308(2013), No. 1-2, p. 46. doi: 10.1016/j.wear.2013.09.008
      [14]
      M. Shah and S. Das Bakshi, Three-body abrasive wear of carbide-free bainite, martensite and bainite-martensite structure of similar hardness, Wear, 402-403(2018), p. 207. doi: 10.1016/j.wear.2018.02.020
      [15]
      T.S. Wang, J. Yang, C.J. Shang, X.Y. Li, B. Lv, M. Zhang, and F.C. Zhang, Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment, Surf. Coat. Technol., 202(2008), No. 16, p. 4036. doi: 10.1016/j.surfcoat.2008.02.013
      [16]
      S.M. Hasan, D. Chakrabarti, and S.B. Singh, Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels, Wear, 408-409(2018), p. 151. doi: 10.1016/j.wear.2018.05.006
      [17]
      S. Das Bakshi, A. Leiro, B. Prakash, and H.K.D.H Bhadeshia, Dry rolling/sliding wear of nanostructured bainite, Wear, 316(2014), No. 1-2, pp. 70-78. doi: 10.1016/j.wear.2014.04.020
      [18]
      R. Rementeria, I. García, M.M. Aranda, and F.G. Caballero, Reciprocating-sliding wear behavior of nanostructured and ultra-fine high-silicon bainitic steels, Wear, 338-339(2015), p. 202. doi: 10.1016/j.wear.2015.06.011
      [19]
      K. Singh and A. Singh, Tribological response and microstructural evolution of nanostructured bainitic steel under repeated frictional sliding, Wear, 410-411(2018), p. 63. doi: 10.1016/j.wear.2018.06.005
      [20]
      X.Y. Long, F.C. Zhang, J. Kang, Z.N. Yang, D.D. Wu, K.M. Wu, and G.H. Zhang, Study on carbide-bearing and carbide-free bainitic steels and their wear resistance, Mater. Sci. Technol., 33(2017), No. 5, p. 615. doi: 10.1080/02670836.2016.1242205
      [21]
      A.K. De, D.C. Murdock, M.C. Mataya, J.G., Speer, and D.K. Matlock, Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scripta Mater., 50(2004), No. 12, p. 1445. doi: 10.1016/j.scriptamat.2004.03.011
      [22]
      H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in silicon steels: New composition-property approach Part 1, Met. Sci., 17(1983), No. 9, p. 411. doi: 10.1179/030634583790420600
      [23]
      E. Kozeschnik and H.K.D.H. Bhadeshia, Influence of silicon on cementite precipitation in steels, Mater. Sci. Technol., 24(2008), No. 3, p. 343. doi: 10.1179/174328408X275973
      [24]
      L.C. Chang and H.K.D.H. Bhadeshia, Austenite films in bainitic microstructures, Mater. Sci. Technol., 11(1995), No. 9, p. 874. doi: 10.1179/mst.1995.11.9.874
      [25]
      C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon, Mater. Sci. Eng. A, 549(2012), p. 185. doi: 10.1016/j.msea.2012.04.031
      [26]
      C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite, ISIJ Int., 43(2003), No. 11, p. 1821. doi: 10.2355/isijinternational.43.1821
      [27]
      B. Avishan, M. Tavakolian, and S. Yazdani, Two-step austempering of high performance steel with nanoscale microstructure, Mater. Sci. Eng. A, 693(2017), p. 178. doi: 10.1016/j.msea.2017.03.104
      [28]
      J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4516. doi: 10.1016/j.msea.2011.02.032
      [29]
      B. Narayanaswamy, P. Hodgson, I. Timokhina, and H. Beladi, The impact of retained austenite characteristics on the two-body abrasive wear behavior of ultrahigh strength bainitic steels, Metall. Mater. Trans. A, 47(2016), No. 10, p. 4883. doi: 10.1007/s11661-016-3690-5
      [30]
      J. Larsen-Basse, Role of microstructure and mechanical properties in abrasion, Scripta Metall. Mater., 24(1990), No. 5, p. 821. doi: 10.1016/0956-716X(90)90119-2
      [31]
      T. Sun, R.B. Song, F.Q. Yang, and C.J. Wu, Wear behavior of bainite ductile cast iron under impact load, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 871. doi: 10.1007/s12613-014-0983-9
      [32]
      H.K.D.H. Bhadeshia, Steels for bearings, Prog. Mater. Sci., 57(2012), No. 2, p. 268. doi: 10.1016/j.pmatsci.2011.06.002
      [33]
      B.G. Liu, W. Li, X.W. Lu, X.S. Jia, and X.J. Jin, The effect of retained austenite stability on impact-abrasion wear resistance in carbide-free bainitic steels, Wear, 428-429(2019), p. 127. doi: 10.1016/j.wear.2019.02.032

    Catalog


    • /

      返回文章
      返回