留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 3
Mar.  2020

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2002
  • HTML全文浏览量:  309
  • PDF下载量:  28
  • 被引次数: 0
Seyed Rahim Kiahosseini and Hossein Ahmadian, Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 384-390. https://doi.org/10.1007/s12613-019-1917-3
Cite this article as:
Seyed Rahim Kiahosseini and Hossein Ahmadian, Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 384-390. https://doi.org/10.1007/s12613-019-1917-3
引用本文 PDF XML SpringerLink
研究论文

添加Co3O4纳米颗粒引起的残余结构应变对粉末冶金制备的Al/Co3O4 纳米复合材料的结构、硬度和磁性能的影响

  • Research Article

    Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy

    + Author Affiliations
    • Al composites are of interest due to their appropriate ratio of strength to weight. In our research, an Al/Co3O4 nanocomposite was generated using a sintering technique. The powders of Al with various Co3O4 nanoparticle contents (0wt%, 0.5wt%, 1.0wt%, 1.5wt%, 2.0wt%, and 2.5wt%) were first blended using planetary milling for 30 min, and compressed in a cylindrical steel mold with a diameter of 1 cm and a height of 5 cm at a pressure of 80 MPa. The samples were evaluated with X-ray diffractometry (XRD), scanning electron microscopy (SEM), Vickers hardness, and a vibrating sample magnetometer (VSM). Although the crystallite size of the Al particles remained constant at 7–10 nm, the accumulation of nanoparticles in the Al particle interspace increased the structural tensile strain from 0.0045 to 0.0063, the hardness from HV 28 to HV 52 and the magnetic saturation from 0.044 to 0.404 emu/g with an increase in Co3O4 nanoparticle content from 0wt% to 2.5wt%.

    • loading
    • [1]
      K.B. Nie, Y.C. Guo, K.K. Deng, and X.K. Kang, Microstructure and mechanical properties of TiCp/Mg–4Zn–0.5Ca nanocomposite in different processing conditions, Mater. Res. Express, 6(2019), No. 6, p. 066525. doi: 10.1088/2053-1591/ab0cd6
      [2]
      R. Taherian, M.M. Ghorbani, and S.R. Kiahosseini, A new method for optimal fabrication of carbon composite paper as gas diffusion layer used in proton exchange membrane of fuel cells, J. Electroanal. Chem., 815(2018), p. 90. doi: 10.1016/j.jelechem.2018.03.009
      [3]
      O. Güven, S.N. Monteiro, E.A.B. Moura, and J.W. Drelich, Re-emerging field of lignocellulosic fiber–polymer composites and ionizing radiation technology in their formulation, Polym. Rev., 56(2016), No. 4, p. 702. doi: 10.1080/15583724.2016.1176037
      [4]
      B.D. Agarwal, L.J. Broutman, and K. Chandrashekhara, Analysis and Performance of Fiber Composites, John Wiley & Sons, Rolla, 2017.
      [5]
      E.J. Barbero, Introduction to Composite Materials Design, CRC press, Boca Raton, 2017.
      [6]
      M. Taya and R.J. Arsenault, Metal Matrix Composites: Thermomechanical Behavior, Elsevier, Amsterdam, 1989.
      [7]
      A. Nanni, Fibre Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications, Elsevier, Amsterdam, 1993.
      [8]
      C.F. Lin, Y.Q. Han, C.H. Guo, Y.P. Chang, X.X. Han, L. Lan, and F.C. Jiang, Synthesis and mechanical properties of novel Ti–(SiCf/Al3Ti) ceramic-fiber-reinforced metal-intermetallic-laminated (CFR-MIL) composites, J. Alloys Compd., 722(2017), p. 427. doi: 10.1016/j.jallcom.2017.06.057
      [9]
      L. Joyyi, M.Z.A. Thirmizir, M.S. Salim, L.Z. Han, P. Murugan, K. Kasuya, F.H. Maurer, M.I.Z. Arifin, and K. Sudesh, Composite properties and biodegradation of biologically recovered P(3HB-co-3HHx) reinforced with short kenaf fibers, Polym. Degrad. Stab., 137(2017), p. 100. doi: 10.1016/j.polymdegradstab.2017.01.004
      [10]
      K. Wang, N. Li, J. Zhang, Z.Q. Zhang, and F.Q. Dang, Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities, Biosens. Bioelectron., 87(2017), p. 339. doi: 10.1016/j.bios.2016.08.026
      [11]
      J.X. Fan, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, and J.M. Lu, Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core-shell bio-nanocomposites, Chemosphere, 191(2018), p. 315. doi: 10.1016/j.chemosphere.2017.10.042
      [12]
      A. Wagih, Mechanical properties of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying, Adv. Powder Technol., 26(2015), No. 1, p. 253. doi: 10.1016/j.apt.2014.10.005
      [13]
      Azimi, A. Shokuhfar, and O. Nejadseyfi, Mechanically alloyed Al7075–TiC nanocomposite: Powder processing, consolidation and mechanical strength, Mater. Des., 66(2015), p. 137. doi: 10.1016/j.matdes.2014.10.046
      [14]
      A.M. Pourrahimi, T.A. Hoang, D.M. Liu, L.K. Pallon, S. Gubanski, R.T. Olsson, U.W. Gedde, and M.S. Hedenqvist, Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: a novel approach toward ultralow electrical conductivity insulations, Adv. Mater., 28(2016), No. 39, p. 8651. doi: 10.1002/adma.201603291
      [15]
      H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, and D. Su, Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation, J. Am. Chem. Soc., 139(2017), No. 40, p. 14143. doi: 10.1021/jacs.7b06514
      [16]
      S. Mohapatra, A.K. Chaubey, D.K. Mishra, and S.K. Singh, Fabrication of Al–TiC composites by hot consolidation technique: its microstructure and mechanical properties, J. Mater. Res. Technol., 5(2016), No. 2, p. 117. doi: 10.1016/j.jmrt.2015.07.001
      [17]
      V.R. Rao, N. Ramanaiah, and M.M.M. Sarcar, Tribological properties of aluminium metal matrix composites (AA7075 reinforced with titanium carbide (TiC) particles), Int. J. Adv. Sci. Technol., 88(2016), p. 13. doi: 10.14257/ijast.2016.88.02
      [18]
      U. Riedel and J. Nickel, Applications of natural fiber composites for constructive parts in aerospace, automobiles, and other areas, [in] Biopolymers Online, Epub ahead of print 2005, https://doi.org/10.1002/3527600035.bpola001
      [19]
      S.F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, and Y.B. Fu, Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion, Mater. Des., 95(2016), p. 127. doi: 10.1016/j.matdes.2016.01.092
      [20]
      X. Gao, H.Y. Yue, E.J. Guo, H. Zhang, X.Y. Lin, L.H. Yao, and B. Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites, Mater. Des., 94(2016), p. 54. doi: 10.1016/j.matdes.2016.01.034
      [21]
      M. Mansournia and N. Rakhshan, Amine ligand-based hydrothermal synthesis of Co3O4 nanoparticles, characterization and magnetic study, J. Mol. Struct., 1125(2016), p. 714. doi: 10.1016/j.molstruc.2016.07.080
      [22]
      J. Li, X.L. Zhao, J.P. Liu, L. Zhang, and C.H. Yang, Ultralight carbon-based Co(OH)2 Co3O4/nanocomposite with superior performance in wave absorption, J. Alloys Compd., 777(2019), p. 954. doi: 10.1016/j.jallcom.2018.10.204
      [23]
      H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater., 426(2017), p. 74. doi: 10.1016/j.jmmm.2016.11.033
      [24]
      Z. Ji, P.H. Ai, C. Shao, T.J. Wang, C.X. Yan, L. Ye, and W. Gu, Manganese-doped carbon dots for magnetic resonance/optical dual-modal imaging of tiny brain glioma, ACS Biomater. Sci. Eng., 4(2018), No. 6, p. 2089. doi: 10.1021/acsbiomaterials.7b01008
      [25]
      P. Dutta, M.S. Seehra, S. Thota, and J. Kumar, A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4, J. Phys.: Condens. Matter, 20(2007), No. 1, art. No. 015218.
      [26]
      J. Buršík, M. Soroka, R. Uhrecký, R. Kužel, F. Mika, and Š. Huber, Thin (111) oriented CoFe2O4 and Co3O4 films prepared by decomposition of layered cobaltates, Appl. Surf. Sci., 376(2016), p. 209. doi: 10.1016/j.apsusc.2016.03.130
      [27]
      M. Roskosz, A. Rusin, and M. Bieniek, Analysis of relationships between residual magnetic field and residual stress, Meccanica, 48(2013), No. 1, p. 45. doi: 10.1007/s11012-012-9582-x
      [28]
      S.R. Kiahosseini, A. Afshar, M.M. Larijani, and M. Yousefpour, Adhesion, microstrain, and corrosion behavior of ZrN–coated AZ91 alloy as a function of temperature, J. Mater. Res., 28(2013), No. 19, p. 2709. doi: 10.1557/jmr.2013.241
      [29]
      S.R. Kiahosseini and M.M. Larijani, Effects of nitrogen gas ratio on the structural and corrosion properties of ZrN thin films grown on biodegradable magnesium alloy by ion-beam sputtering, Appl. Phys. A, 123(2017), No. 12, p. 759. doi: 10.1007/s00339-017-1389-0
      [30]
      S.R. Kiahosseini, A. Afshar, M.M. Larijani, and M. Yousefpour, Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering, Appl. Surf. Sci., 401(2017), p. 172. doi: 10.1016/j.apsusc.2017.01.022
      [31]
      S. Fooladi and S.R. Kiahosseini, Creation and investigation of chitin/HA double-layer coatings on AZ91 magnesium alloy by dipping method, J. Mater. Res., 32(2017), No. 13, p. 2532. doi: 10.1557/jmr.2017.231
      [32]
      A. Fathy, E.-K. Omyma and M. M. Mohammed, Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 46. doi: 10.1016/S1003-6326(15)63577-4
      [33]
      D.J. Craik and M.J. Wood, Magnetization changes induced by stress in a constant applied field, J. Phys. D:Appl. Phys., 3(1970), No. 7, p. 1009. doi: 10.1088/0022-3727/3/7/303
      [34]
      M. Galini, M. Salehi, and M. Behzad, Structural, magnetic and dielectric properties of pure and Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media, J. Nanostruct., 8(2018), No. 4, p. 391. doi: 10.22052/JNS.2018.04.009

    Catalog


    • /

      返回文章
      返回